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Introduction

This dissertation examines the origins of computer science in 
that branch of mathematical logic known as recursive function 
theory. It argues that in response to a foundational crisis in 
mathematics, a new mathematical discipline of recursive functions 

was developed. The recursive functions were the formal character
izations of the functions one could actually-compute in mathe
matics. Thus, the recursive functions provided the theoretical 
basis for computer science. In fact, two of the more important 
researchers in logic, Alan Turing and John von Neumann, used 
their experience with the mathematical theory of recursive func
tions in the design of physical computing machinery and in the 
development of theoretical computer science. The dissertation 
traces this movement from mathematics to computer science and 
focuses in particular on the work of Turing and von Neumann.

As well as being a popular account of the development of 
computer science and information processing in general, the 
dissertation should be of specific interest to the mathematician, 
the computer scientist, the logician, the philosopher, and the 
cognitive scientist. Part of the reason for this is the rather

1
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different focus of this dissertation from most work in the 
history of computers. Typically, scholarship in the history of 
computers has focused on the genealogy of computers and computer 

technology. It has been extremely internalist and has not been 
interested in the relation of computer science to other disci
plines. This dissertation, however, aims to examine some of the 
roots of computer science in mathematics, philosophy, psychology, 
and physics.

The computer scientist should be interested in this dis

sertation because it will help him to see the roots of his 
field in other disciplines, particularly in mathematics. Besides 
the intrinsic interest of the subject, it helps the computer 
scientist in understanding the logical design of the early 
computers, which, to a large degree, has set the framework for 
the logical design of present computing machinery. This is 
especially true because the machines von Neumann helped design 
were crucial ancestors in the genealogy of American computing 
machinery. Turing's work is important, although to a lesser 
extent, in the development of British computing machinery.

This work should be of interest to mathematicians because it 
shows the various connections of computer science to mathematics. 
It shows, in particular, how computer theory came out of widely 
diverse areas of mathematics, including logic, numerical analysis, 
mathematical physics, and applied mathematics. It also throws
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light on the issue of what bearing the computer has in pure 
mathematical research, for von Neumann had strong and well- 
developed ideas on the subject.

The dissertation helps the philosopher to get an idea of the 
relationship between two related sciences, mathematics and computer 
science, one entirely mental and one partly empirical. It gives 
a good idea of the use of the computer as an experimental tool.
This work also addresses the issues of specific philosophical 

importance, namely artificial intelligence and automata theory 
(which is concerned with questions, for example, such as what 
is the logical nature of self-replication). Finally, the 
dissertation traces the actual attempts made by mathematicians 
to treat the philosophical problems of a foundational crisis in 
their field. This provides a valuable balance to the philosophical 
study of intuitionism, logicism, and formalism, which is 
altogether too frequently studied by philosophers outside of the 
historical context of researchers actually trying to resolve 
problems so as to continue work in their field.

For a rough understanding of the dissertation, a general 
knowledge of mathematics and science should suffice. Certain 
sections do require special training if one is to follow the 
details as well as the general structure of the argument. The 
first two chapters concentrate on the mathematical background to 
the development of computer science. Therefore- it would help
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for the reader to have a knowledge of mathematics. Chapter Two 
is the only truly technical chapter. To follow the arguments in 
it in complete detail would require an undergraduate degree in 
mathematics and some graduate work in logic. Even for those not 
versed in advanced mathematics, however, it is easy to follow 
the general argument. The mathematically uninitiated might wish 
to only skim the two sections of Chapter Two on recursive func
tions, for these are highly technical and only tangentially 
connected with the remainder of the dissertation.

The third and fourth chapters concern the development of 
physical computing machinery. To appreciate fully these sections 
it would be useful to have at least rudimentary knowledge of the 
working of computers and computer engineering. The fifth 
chapter provides a retrospective of the various fields that 
developed after the second world war which were based on the 
concept of information processing. Thus, a general knowledge of 
philosophy, physics, physiology, and psychology would be of use 
in understanding the backgrounds to these new interdisciplinary 
fields. Chapters Six and Seven are primarily self-contained, and 
no special knowledge is required.

The dissertation consists of three major sections. The 
first section describes the mathematical background to the 
development of the mathematical theory of computing. The first 

chapter argues that, due to the use of abstraction and infinity,
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there was a foundational crisis in mathematics around the turn 
of this century. The crisis centered around counter-intuitive 

and meaningless results, unwarranted assumptions of powarful 
principles, and outright contradictions in mathematics. The 
chapter describes one of the major answers to the crisis, a 
conservative, philosophically based reaction, known as construc
tivism, which attempted to reformulate the foundations of 

mathematics by constructing every object of mathematical interest 
from primitively accepted objects. The chapter concludes with an 
assessment of the failure of the earliest of the constructivist 
attempts.

Chapter Two describes a later, and more sophisticated, 

attempt by David Hilbert to use constructivist techniques to 
provide a foundation for mathematics. Unfortunately, using the 
same mathematical technique, Kurt Gtfdel was able to show that 
Hilbert's program was also doomed to failure. The situation was 
not entirely bleak, however, for Hilbert's and Gfldel’s techniques 
provided Che development of a new mathematical discipline, 
recursive function theory, which provided a precise mathematical 
characterization of those functions which the constructivists 
thought were acceptable in mathematics. Many different char
acterizations were given by the mathematicians of the recursive 
functions. However, the first one to be both precise enough to be 
used in formal mathematics and intuitive to convince the
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mathematical community that it characterized the constructable 
functions was given by Alan Turing. His characterization was 
in the form of a theoretical machine which would carry out the 
computations of the functions. Turing perfected his theoretical 
machines while completing a graduate degree at Princeton 
University. There he met the famous mathematician and logician, 
John von Neumann. The two of them discussed the possibilities 
of putting Turing's characterization to work in the development 
of physical computing machinery. Unfortunately, the war inter
vened and their plans had to be put aside. The last half of 
Chapter Two describes the technical details of the development of 
recursive function theory, explains the importance of Turing's 
characterization for mathematics, and concludes with a description 
of the first discussions of malting Turing's work useful for 
physical computing as well.

The second section of the dissertation examines the attempts 
by Turing and von Neumann to work Turing's logical idea of an 
idealized computing machine into the design of modern computing 
machinery. Chapter Three discusses Turing's work oa the design 
of physical computing equipment during the war at Bletchley Park 
on the Colossus and Robinson series machines, and his work after 
the war at the National Physical Laboratory on Pilot ACE and at 
the University of Manchester on MANIAC. Chapter Four discusses 
von Neumann's work on the design of computing equipment at the
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University of Pennsylvania on ENIAC and EDVAC and on the Institute 
for Advanced Study computer. The emphasis is on the logical 
design of the computers. However, other technical details are 
also considered.

The third section of the dissertation examines the develop
ment of theoretical computer science and the more general devel
opment of the theoretical study of information processing.
Chapter Five describes the general development of new inter

disciplinary sciences of communication theory, cybernetics, 
physiological psychology, automata theory, and artificial 
intelligence. It argues that the developments of these fields 

were related and that they stemmed from war-related work on the 
concept of information processing. The last two chapters 
detail Turing's and von Neumann’s contribution to the subject. 
Chapter Six describes Turing’s work on artificial intelligence. 
Chapter Seven discusses von Neumann's work on automata theory. 
These three chapters show that the ideas from logic were useful 
for the development of theoretical computer science, which 
studies this concept of information processing, as well as the 
basis for the design of physical computing equipment.

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

Chapter One: Brouwer, Constructivity,
and the Foundational Crisis 

Facing Twentieth Century Mathematics

L. E. J. Brouwer completed his doctoral dissertation at the 
University of Amsterdam in 1907. In this famous dissertation he 
introduced a radical new philosophy of mathematics, known today 
as intuitionism. This philosophy was a reaction to what Brouwer 
saw as a foundational crisis in mathematics which had developed 

over the three decades prior to his dissertation. The cause, he 
believed, was the growth of abstract mathematics and the use of 
actual infinities in mathematical practice. The effect, he 
perceived, was meaningless and contradictory results in the new 
mathematics.

Brouwer's intuitionist system is the prime twentieth century 
example of a conservative, philosophical reaction, known as 
constructivism, which has arisen repeatedly in the history of 
mathematics whenever it has appeared that the foundation of 
mathematics was not secure. The purpose of this chapter is to 
examine the origins and nature of this twentieth century crisis 
as well as to describe Brouwer's and others' constructivist 

attempts to rectify this problem. Subsequent chapters will show 
how these constructivist activities led to the development of a

8
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theoretical framework for computer science. However, in order to 
understand fully the rationale of Brouwer’s position, the rise of 
abstraction and infinity must first be traced.

Axiomatics, Abstraction, Foundational Crisis

Although the rise of abstraction in mathematics is a complex 
issue, the main stimulus seems to have been the development of 
non-Euclidean geometry. The existence of non-Euclidean geome
tries equal in stature and contradictory to Euclidean geometry 
obliged mathematicians to reassess their beliefs on the nature of 
mathematics and its relation to the physical world. While the 
earliest propositions were formulated at the beginning of the 
nineteenth century, the importance of ucn-Euclidean geometry was 
not generally recognized until the 1860's because 3olyai and 
Lobachevsky's work was overshadowed by projective geometry in the 
1830's and 1840's and because Gauss' work on the subject was 
published only posthumously in 1855.

The existence of non-Euclidean geometries convinced students 
of mathematics that Euclidean geometry could not be equated with 

the geometry of physical space. The fact that two consistent, 
workable mathematical systems which were mutually contradictory 
could exist contemporaneously indicated that the foundation for 
mathematics was not to be found in the physical world. What then
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would provide the requisite foundation? The answer for 
mathematics was a heavy reliance on axiomatics. If one could 
axiomatize a mathematical system, then one could check the 
foundation of the entire system by merely checking the few axioms 
and logical principles of reasoning for the system.

This approach was taken with respect to Euclidean geometry. 
Euclid had assumed the truth of the parallel postulate;^- whereas 
the non-Euclidean geometers had shown that it was independent of 
the other axioms of geometry and was thus only relatively true 
or false, depending on the system within which one was working.
If the problems of the parallel postulate had gone untreated by 
Euclid, what other logical gaps could be found in The Elements? 
Thereafter, all of Euclid’s proofs were studied with critical 
acumen for logical gaps. The position taken by mathematicians at 
the turn of the century towards The Elements was summarized by

1 Euclid's parallel postulate (Postulate Five) postulates: 
That, if a straight line falling on two straight lines makes 
the interior angles on the same side less than two right angles, 
the two straight lines, if produced indefinitely, meet on that 
side on which the angles are less than the two right angles. 
Elements, Book I. The issue amounts to how many lines may be 
parallel to a given line through a given point not on that line. 
Euclid assumes, incorrectly, that the number must be one. It 
may, in fact, be any whole number or infinitely many, depending 
on the system in which one is working.
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Bertrand Russell:2

It Is customary . . .  to defend him [Euclid] on the 
ground that his logical excellence is transcendent, and 
affords an envaluable training to the youthful powers of 
reasoning. This claim, however, vanishes on a close 
inspection. His definitions do not always define, his 
axioms are not always indemonstrable, his demonstrations 
require many axioms of which he is quite unconscious. A 
valid proof retains its demonstrative force when no 
figure is drawn, but very many of Euclid's earlier 
proofs fail before this test. . . . The value of his 
work as a masterpiece of logic has been very grossly 
exaggerated.

One group of mathematicians, led by Pasch, showed how 
Euclidean geometry could be reformulated in terms of projective 
geometry.^ Another group, of more interest here, led by Peano 

and Hilbert, developed the axiomatic approach in order to provide 
a secure foundation for Euclidean geometry.^ For the most part, 

this approach was successful. Scores of different axiomatic 
systems were propounded, each beginning with slightly different 
primitive concepts. The culmination of the movement was

2 Bertrand Russell, Foundations of Geometry, 1902, excerpted 
from the quotation in Morris Kline, Mathematical Thought from 
Ancient to Modern Times, p. 1005.

O For details see M. Kline, 0£. cit.. Chapter 42, and 
M. Pasch and M. Dehn, Vorlesungen flber neuere Geometrie,
2nd ed., 1926.

^ See M. Kline, on. cit., Chapter 42 for an overview.
. Peano's work can be found in his Opere Scelte, 3 vol., 1957-59.
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undoubtedly Hilbert's axiomation of geometry, first given in 
1899,5 but improved throughout his life.

Of more importance here is the growth of an axiomatic 

movement out of the attempts to provide an axiomatic foundation 
for Euclidean geometry. Poincard pointed out** that these 
axiomatic systems must be consistent. Peano discussed^ the 

condition of independence and its desirability for the axiomatic
Qsystems for Euclidean geometry. Veblen developed the conditions 

of categoricalness and completeness for an axiomatic system.
These conditions, first developed as properties required for the 
axiomatic systems for Euclidean geometry, soon became the 

standards for all axiomatic systems. Soon axiomatics were being 
used in almost every field of mathematics.9 Hilbert was the

5 See the various versions of D. Hilbert, Grundlagen der 
Geometrie, 1st ed. (1899) through 7th ed. (1930).

 ̂H. Poincare, "On the Foundations of Geometry," Monlst, 
1898, vol. 9, p. 38.

 ̂See G. Peano, Arithmetices Principia (1889) and Sui 
fondamenti della geometria (1894).

® 0. Vablen, "A System cf Axioms for Geometry,"
Transactions of the American Mathematical Society 5 (1904), 
pp. 343-384.

 ̂See M. Kline, op. cit., Ch. 42-43 for an overview.
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champion of this movement:^

Everything that can be the object of mathematical 
thinking, as soon as the erection of a theory is ripe, 
falls into the axiomatic method and thereby directly 
into mathematics. By pressing to ever deeper layers of 
axioms . . .  we can obtain deeper insights into 
scientific thinking and learn the unity of our know
ledge. Especially by virtue of the axiomatic method 
mathematics appears called upon to play a leading role 
in all knowledge.

Not only were axiomatics used in every field of mathematics 
to provide a foundation for the work already done. They were also 
used to explore new problems by slightly varying the axiom 
system of the classical theory and by then contrasting the 
resulting system with the classical theory. This was radically 
different from classical mathematics, where theory revolved 
around the study of the structure- and properties of known 
objects such as the real line. Mathematics had been led even 

further from physical reality than before. The effect was a 
mathematics which studied abstract structures created by man—  

not given by the physical world. The mathematician was now free

I® D. Hilbert, "Axiomatisches Denken," Mathematische 
Annalen, 78 (1918), pp. 405-415. Also in Hilbert's 
Gesammelte Abhandlunaen. 3, pp. 145-156. Quoted as translated 
in Kline, 0£. cit., p. 1027.
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to create any mathematical system he pleased— provided that it was

internally consistent. Hilbert emphasised this pointr1*
Indeed the axiomatic method is and remains the one 
suitable and indispensable aid to the spirit of every 
exact investigation no matter in what domain; it is 
logically unassailable and at the same time fruitful; 
it guarantees thereby complete freedom of investigation.

The same point is made by Cantor^ even more directly:

Mathematics is entirely free in its development and 
its concepts are restricted only by the necessity of 
being noncontradictory and coordinated to concepts 
previously introduced by precise definitions. . . .
The essence of mathematics lies in its freedom.

Notice that both emphasised the freedom of mathematics—  

not its abstraction. However, the emphasis on the axioms them
selves and only secondarily on what could be derived from them, 
the loss of a physical interpretation for mathematics, and the 
loss of a distinguished set of axioms (such as there had been for 

Euclidean geometry) which meant that one had no reason to study 
the details of any particular system in depth— all of these led 
mathematics to become more abstract as well as more free.

H  D. Hilbert, "Neubegriindung der Mathematik, Erste Mit- 
teilung," Abhandlungen Mathematische Seminar der Hamburger 
Universitat.. 1 (1922) pp. 157-177. Also in Hilbert’s Gesammelte 
Abhandlungen, 3, 157-177. Excerpted from the quotation as 
translated in M. Kline, op. cit., p. 1027. My emphasis.

12 g . Cantor, "Ueber unendliche, lineare Punktmannichfaltig- 
keiten," Mathematische Annalen, 21 (1883), pp. 563-564. Also in 
Cantor, Gesammelte Abhandlungen, p. 182. Quoted as translated in 
M. Kline, oy». cit., p. 1031.
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Although every branch of mathematics was influenced by the 
axiomatic approach and the consequent increase in freedom and 
abstraction, one of the most significant changes was the develop
ment of infinite sets and transfinite numbers by Cantor.
Actually, Cantor was not an axiomatist. However, as the above 
quotation suggests, he utilized the freedom of the new mathematical 
approach to introduce infinite sets of points into mathematics, 
where previously only finite sets of points^ had been considered 
as legitimate, and to extend the system of natural numbers to 
include all of the transfinite numbers. The procedure in both 
cases involved abstracting properties from finite cases which could 

be used for definition in infinite cases. This is especially 
clear in the definitions Cantor gave of ordinal and cardinal 
numbers:

Definition: To every ordered set M there corresponds
a definite "order type," which we shall designate by 
H; by this we mean the general concept which arises

13-L-’ Strictly speaking, this is not correct. Completed 
infinite sets of points, as given by a finite definition, were 
certainly accepted in mathematics. One could talk about the 
integers, the rationals, or the reals, for example. One could 
speak in general, for example, about all the limit points of a 
set. But, if they were infinite in number, nothing could be said 
about all the individual points at once, except what was given by 
the definition of the function. Certainly nothing could be said 
about exactly how many there were. Exactly what could and could 
not be said about infinite point sets before Cantor is hard to 
characterize.
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from M if we only abstract from the character of 
its elements m but retain the order in which elements 
occur in M

Definition: We call the "power" or "cardinal number"
of M that concept which is derived from the set 
M by the help of our active powers of thought. The 
concept is abstracted from the character of the 
various elements m and from the order in which 
they occur in M

Cantor used the symbol to designate the cardinality of M ,

with the two strokes representing the two acts of abstraction
required to form the cardinal from the set M . Order and size,
the two properties measured by ordinality and cardinality,
were well-known properties of finite sets. In fact, Cantor even
utilized his new concepts to explain the difference between finite
and infinite sets. For finite sets M , N , ^  implies
H  = U  ; but for infinite sets P , Q , F  = ^  does not necessarily
imply P = Q .

Although Cantor capitalized on the freedom of the new 
mathematics to develop his theory of infinite point sets, his 
theory was in touch with many of the classical branches of

^  G. Cantor, "BeitrSge zur Begrundung der transfiniten 
Mengenlehrer," Fart I, Mathematische Annalen 46 (1895), p. 297. 
Also in Contributions to the Founding of the Theory ̂ f Transfinite 
Numbers, ed. and trans. by P. E. B. Jourdaia (1915), p. 111.

15 Ibid., p. 282. Also in Jourdain, 0£. cit., p. 86.
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mathematics. Cantor had first attended the problem ox infinite 

point sets in trying to establish a uniqueness theorem for 
trigonometric representations of functions.^ His theory of 
infinite point sets answered the uniqueness question for all but 
a small minority of cases. In fact, the theory also provided 
answers to two other well-known problems from classical nine
teenth century analysis. He was able to provide the first simple 
and general proof that transcendental numbers do exist.^ He 
was also able to prove that all the finite dimensional Euclidean 
spaces were of the same cardinality.^ Besides these proofs and 

the development of an arithmetic of transfinite numbers, Cantor's 
work introduced a number of new concepts that were used extensively 
in topology and analysis, including: well-order, closure, density, 
limit points, perfect sets.

At first other mathematicians were hesitant toward Cantor's 
theory because it broke with a two millenia tradition which 
eschewed the use of actual infinities, because of Cantor's

16 See J. Dauben, o]3. cit., Ch. 1, 2 for details.

1^ See G. Cantor, "Uber eine eigenschaft des Inbegriffes aller 
reellen algebraischen Zahlen," Journal fiir die reine und ange- 
wandte Mathematik 77, pp. 258-262. Also in Cantor's Gesammelte 
Abhandlungen mathematischen und philosophischen Inhalts, Ed. by E. 
Zermelo, Berlin, 1932, pp. 115-118.

18 Cantor's results were first published in a series of 
letters to Dedekind throughout the 1870's. Their letters are 
discussed in J. Dauben, op.. cit., Ch. 3.
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difficult personality, and because of Kronecker's vehement
reaction against Cantor's theory. However, as the theory became
more familiar and the power of the methods became more apparent,
mathematicians began to use Cantor's theory to solve problems in
their own fields. Schroeder, Bernstein and later Scnoenflier

19and Zermelo developed set theory. Poincard was the first to 
use Cantor's theory in a completely different field when he 
applied it to solve some problems in differential equations in 
the 1880's. This work was also utilized in the early development 
of functional analysis, as can be seen in the work of Arzela and 
Volterra. Hilbert^ adopted and extended to’ a theory of infinite 
spaces material from a paper by Fredholm^ on integral equations 

which utilized Cantor's results. Many of the new concepts

For a report on the early development of set theoTy, see 
A. Schoenflies, Entwickelung der Mengenlehre und Ihrer Anwendungen. 
TJmarbeitung des im VIII Bander der Jahresbericht der Deutschen 
Mathematiker-Vereinigung erstatteten Berichts. Erste HHlfte: 
Allgemeine Theorie der Unendlichen Mengen und Theorie der 
Punktmengen. Leipzig, 1913. Also see J. Dauben, op. cit.,
Ch. 11.

20 Hilbert did this work in a series of papers written 
between 1904 and 1910 for Nachrichten von der Kbniglichen
Gesellschatt der Wissenschaften zu Gottingen. These papers were 
reproduced in his book, Grundzuge einer allgemeinen Theorie der 
linearen Integralgleichungen (1912).

21 I. Fredholm, "Sur une classe d'equations fonctionelles," 
Acta Mathematica, 27 (1903), pp. 365-390.
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introduced by Cantor were developed into point set topology
22between 1880 and 1920. These same concepts were used to advan

tage by Lebesque, Baire, and especially Borel^ in the development 
of measure and integration theory. Thus, soon Cantor's theory of 
infinite sets had been incorporated into a number of important 
fields of mathematics. This was the Cantorian paradise to which 
Hilbert was to refer.^

The growth of abstraction and fhe employment of infinity 
undoubtedly added to the richness of mathematics. Many new fields, 
such as topology and set theory, opened up, and many old problems, 

such as the uniqueness of Fourier representations of functions, 
were solved. Unfortunately, there was a negative aspect to these 
developments as well. It was to these negative aspects in the

22 See J. H. Manheim, Genesis of Point Set Topology. 1964.

23 See H. Lebesque, La Mesure des grandeurs. Published 
originally as "Sur la mesure des grandeurs," Enseignement 
mathematique 31-34 (1933-36). Later reprinted as the first of 
the Monographies de 1 *Enseignement Mathematique. Translated by 
Kenneth 0. May in Measure and the Integral, 1966. Also Legons 
sur l1integration et la recherche des fonctions primitives (1904). 
Also see T. Hawkins, Lebesque's Theory of Integration. 1970.
Also see R. Baire, "Sur les fonctiones de variables reeles," 
Milan, 1899, doctoral dissertation, Faculte des Sciences, Paris, 
no. 977.

^  D. Hilbert, "tlber das Unendliche," Mathematische Annalen, 
95 (1926), p. 170. Also in Grundlagen der Geometrie. 7th ed., 
1930, p. 274.
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new mathematics that Brouwer reacted in the development of his 
intuitionistic system.

The first objection to abstract mathematics focused on the 

charge that it was strongly counter-intuitive, in the sense that 
it contradicted the intuitions of practitioners of the discipline 
gained working with the classical results in their field. For 
example, there was dissatisfaction over Weierstrass' (1872) 
example of an everywhere continuous, nowhere differentiable 
function^ and over Peano's (1890) space-filling curve*^ because 
both contradicted all of the analyst's past experience. As both 
of the curves were constructed by infinite processes,^ there was 
at first suspicion and consequently close scrutiny of the proc
esses that were used in constructing these examples. A similar 
concern arose over Cantor's theory of transfinite numbers. Other 
mathematicians believed that infinite numbers were either mean
ingless of self-contradictory. However, in all three cases the 
suspicion passed as the objects became more familiar and so

25 In an unpublished lecture. See J. Mannheim, op. cit., 
for details.

^  G. Peano, Mathematische Annalen, 36 (1980), pp. 157-160). 
Also in G. Peano, Opere Scelte, 1, pp. 110-115.

Peano's curve was the limiting curve f approximated by 
finitely constructed approximating curves fn ., for n a natural 
number. Weierstrass function was defined by an infinite series.
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became part of their new intuition of mathematics. Thus, it 
seems that the objection that the new results were counter
intuitive was the weakest of all the objections and was one 
that the mathematicians learned to live with as the new results 

became more familiar. However, a vestige of this suspicion was ' 
to remain, only to resurface as a strong negative reaction once 
there was a difficulty with the new results, such as the emer
gence of the set-theoretic paradoxes.

A second objection was that the new mathematicians were 
using powerful axioms unwarrantably. Usually the objection was 
that the axioms had not been shown to be consistent (with the 
other axioms of the systems), and there was fear that the appli
cation of such axioms would lead to contradictions in mathematics.

28The foremost example of this was the axiom of choice. The 
assumption of this axiom, which stated that, no matter what the 
circumstances, one could make as large an infinite number of 
different choices as needed, with each choice representing a 
different set, seemed suspicious to many mathematicians. When, 
in 1904, Zermelo showed that the Axiom of Choice was equivalent

2° For a discussion of objections to the Axiom of Choice, 
see A. Fraehkel and Y. Bar-Hillel, Foundations of Set Theory,
pp. 80-86.
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29to the Well-Ordering Theorem, there was a flood of protest 
against the proof,20 and Lebesque, Borel, Baire, Lusin, and 

Pasch, the very mathematicians who used set theory (including 
the axiom of choice) to develop measure and integration theory, 
objected to the use of the axiom itself.21 A similar situation 
arose later with Russell's logicist program, where critics argued 
that there was no reason to allow the multiplicative axiom 
(his version of the axiom of choice), the axiom of infinity 
(which postulated the existence of an infinite number of 
objects), and the axiom of reducibility (which argued that any 
construction in the ramified theory of types could be reduced to 
a type one construction) as logical principles useful in the 
reductionist program of the logicists.

A third criticism of the new mathematics was of its meaning
lessness, usually due to the abstract nature of the results.
The argument was that the extreme generality and abstractness

29 See Mathematische Annalen, vol. 60 (1905). Zermelo's 
proof had appeared in volume 59.

The Well-Ordering Theorem states that every set can be 
well-ordered, that is, put in an order such that each subset 
of the set has a least element.

However, these mathematicians were not entirely 
consistent, in that they continued to use the Axiom of Choice in 
their own research. This point is discussed in more detail 
later in this chapter with respect to Borel.
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of the new results did act relate in any concrete way to the 
results of classical mathematics. This argument was made 

against the axiom of choice by some mathematicians, for no 
indication had been given as to how to use classical techniques 
to make choices of these representative elements as required by 
the axiom. However, the most significant instance of this 
criticism involved the 1906 doctoral dissertation of Frechet at

onthe University of Paris. In the dissertation, Frechet general
ized the notion of function by abstraction:

For that, we will say that a functional operation is 
defined on a set of elements E of arbitrary nature 
(numbers, curves, points, etc.) when, to each element 
A of E corresponds a numerically determined value of 
U: U(A). The examination of the properties of these
operations.constitutes the object of the Functional 
Calculus.

In this attempt to develop a general functional calculus, Frechet 
argued that function theory must resort to the general viewpoint 
given by Cantorian set theory. Frechet focused on a general 
concept of limit which he showed subsumes the objects of study 
of his predecessors in function theory: Cauchy integrals,
Riemann integrals, Lebesque integrals, functionals. Instead of

^  M. Frechet, Rendiconti del Circolo Mathematico di 
Palermo (1906).

O O Ibid., p. 1. Quoted as translated in J. Manheim, op. 
cit., pp. 116-117. Emphasis in the original.
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studying particular points, lines, planes, or function sets,
he studies arbitrary sets of elements. Moreover,

frechet*s study of abstract spaces brought into 
existence very general geometries, geometries 'which 
did not necessarily conform to Klein’s method of 
classification. A space, in this new view, was a 
set of objects called points and a set of relations 
among these points; geometry became simply the theory 
of such a s p a c e . 3 4

At first many mathematicians did not understand the point of 
Frechet's work. They were willing to grant the significance of 
each of the particular theories subsumed by Frechet's theory, 
but they could not see the point of his abstract theory itself. 
Where Frechet saw himself as generalizing the work of his 
predecessors, his critics saw him as removing all the content 
from the work of his predecessors. According to the critics of 
the new m a t h e m a t i c s , ^  Frechet's work epitomized the difficulties 

inherent in the abstractness of the new mathematics.
The last, but most devastating, criticism of the new 

mathematics was the existence of contradictions in Cantorian sec 
theory, the so-called antinomies of set-theoretic paradoxes.-30

j. Manheim, 0£. cit., p. 132.
35 A si ilar position is held today by many mathematicians 

towards category theory, which is commonly known as "abstract 
nonsense."

36 There are numerous treatments of the set-theoretic 
paradoxes. See, for example, A. Fraenkel and Y. Bar-Hillal, 
op. cit., or B. Russell, Principles of Mathematics (1903).
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Cantor realized, perhaps as early as 1 8 9 1 , that the set of all
sets, supposedly the largest set, would have to give rise to an
even larger set, the set of all its subsets, according to the
rules of his set theory. However, Cantor avoided the apparent
contradiction by arguing that such secs are "absolutely infinite, 
inconsistent collection!s] ."^® In fact, Cantor utilized this fact 
in his religious interpretation of set theory and was not at 
all concerned about it. Although a version of the paradox was 
published as early as 1895,35 its significance was not made clear 
until Russell introduced his version of the paradox^ and 

popularized it in his 1903 Principles of Mathematics. Numerous 
treatments of the paradoxes appeared in English, German, French, 
and Italian. Many solutions were proposed, but none was really

^  See J. Dauben, o£. cit., Ch. 7 for a discussion of the 
chronology. The earliest paper in which Cantor discusses the 
problem at all is, "Uber eine elementare Frage der Mannigfaltig- 
keitslehre," Jahresbericht der Deutschen Mathematiker-Verein- 
igung I, pp. 75-78. Also in Cantor, Gesammelte Abhandlungen, 
pp. 278-280.

38 Letter from G. Cantor to R. Dedekind, 3 August 1899. 
Reprinted in Gesammelte Abhandlungen (1932), p. 445. Quoted as 
translated in J. Dauben, 0£. cit., p. 243.

39 See C. Burali-Forti, Rendiconti del Circolo Mathematico 
di Palermo, 11 (1897), pp. 154-164, 260.

^  Russell’s paradox involves the Russell Set S , the set 
of all sets which are not elements of themselves. It is im
possible to consistently answer the question whether S is an 
element of S .
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successful until the modifications were completed to Zermelo 

set theory by Fraenkel and Skclem in the late 1920’s. Thus, the 
whole theory of sets, together with all the work in topology, 
functional analysis, and measure theory based on this set theory, 
was suspect until the problem of the set-theoretic paradoxes could 
be resolved. Many of the critics of the new mathematics thought 
that the paradoxes would never be resolved and that infinite 
mathematics should be purged in order to preserve the foundation 
of classical mathematics.

Brouwer’s Solution to the Foundational Crisis

These were the problems which stimulated Brouwer to develop 
his intuitionist program; many of the developments of the new 

mathematics were strongly counter-intuitive; the new mathemati
cians were using powerful theorems unwarrantably; much of the 
new mathematics was meaningless, due especially to the abstract 
nature of the results; and the new mathematics led to contra
dictions, in particular to the set-theoretic paradoxes. Brouwer 
believed that these problems were merely symptomatic of a larger 
problem which involved the entire methodology of mathematics.
He felt that the new mathematics erred in adhering to a formalist 
approach, one which accepts objects as mathematically legitimate 
because of their form or formal properties when expressed in a
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linguistic or axiomatic logical system, Prior to Brouwer, all 
mathematicians had been willing to accept a substantial part of 
mathematics and the rules of classical logic without any justi
fication of their legitimacy, Even objects with dubious legiti
macy, such as the continuum (dubious because of its abstract 
definition in terms of infinite sets), were hardly questioned by 
the mathematical community. As Brouwer, himself, more specifically 
assessed the state of mathematics at the time:41

The situation left by Formalism and Pre-intuitionism 
can be summarized as follows: for the elementary
theory of natural numbers, the principle of complete 
induction, and more or less considerable parts of 
algebra and theory of numbers, exact existence, ab
solute reliability, and noncontradictority were 
universally acknowledged, independently of language and 
without proof. There was little concern over the 
existence of the continuum. Introduction of a set of 
predeterminate real numbers with a positive measure was 
attempted by logico-linguistic means, but a proof of 
the noncontradictory existence of such a set was lacking. 
For the whole of mathematics the rules of classical 
logic were accepted as reliable aids in the search for 
exact truths.

Brouwer felt that reliance cn the form of an object cr 
statement of a result was no guarantee of mathematical legitimacy, 
and that such reliance would lead to either meaningless or 
contradictory results. Statement XX adjoined to the end of his

41 L. E. J. Brouwer, "Historical Background, Princioles and 
Methods of Intuitionism," South African Journal of Science 
October-November 1952, p. 1 4 0 . ----------------- -
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dissertation explicitly s t a t e s

To secure the reliability of mathematical reasonings 
one cannot succeed solely by starting from some 
sharply formulated axioms and strictly adhering to the 
laws of theoretical logic.

To him the only legitimate mathematical objects were those that
could be constructed "from scratch'' in a non-controversial way;
the only legitimate proofs were those in which the proposition to

be proved was exhibited by means of a construction. This
insistence on constructions as the basis for proofs and for the
legitimacy of mathematical objects is the major tenet of the
constructivist position.

Such an approach, Brouwer argued, immediately would elim
inate the problems created by abstraction and infinity in mathe
matics. Suspect abstract objects either would be given meaning 
by showing their construction or would be banished from mathematics 
until their construction could be shown, for mathematical exist
ence was to be equated with constructibility.

Brouwer was also able to answer the problem of the infinite 
easily. A number of the difficulties the new mathematicians 
were finding themselves in, Brouwer believed, were due to the

I n

L. E. J. Brouwer, "Over de Grondsl der Wiskunde," 
doctoral dissertation, University of Amsterdam, 1907. Quoted as 
translated in Brouwer's Collected Works, I. p. 101.
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use of finitistic reasoning in an infinitiotic setting.
Classical logic had formulated rules, such as the principle of 
the excluded third, for finitistic situations. Such a principle 
was perfectly admissable to Brouwer in finite situations where each 

of a finite number of conditions could he individually checked.
Xt was not admissible, however, in the case of the continuum, 
for example, where an infinite number of cases would have to be 
checked to determine F or not-P . Thus, the classical 
mathematician was getting into trouble with infinity by using 
principles of reasoning never intended for use in an infinite 
setting.

Consider, for example, the principle of the excluded third.
It states that "every assignment t of a property to a mathemati
cal entity can be judged, i.e., either proved or reduced to

/  Qabsurdity." This principle was perfectly admissable to 
Brouwer in finite situations, where each of a finite number of 
conditions could be individually checked. For example, to assert 
of cwo finite sets, A and B, that either they contain the same 
members or they do not will not lead to a constadiction. This

43 L. E. J. Brouwer, "Consciousness, Philosophy and 
Mathematics," Proceedings of the 10th International Congress of 
Philosophy. Amsterdam, 1940. Quoted from P. Benacerraf and
H. Putnam, Readings in the Philosophy of Mathematics. 1964, p. 79.
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is because one can compare the elements, one by one, of the two 
sets to determine whether they are the same. So, one has a 
means for judging on the proposition. However, if the two sets,
A and B, were infinite, then there would be no such means, even 
in principle, for judging the equivalence or non-equivalence of 

the two sets. Thus, in the infinite case, there is no possibility 
of providing a construction proving the proposition (that the 
two sets are equivalent) or of providing a construction proving 
the absurdity of the proposition without checking an infinite 

number of cases1— which Brouwer disallows. To Broiiwer's mind, 
this means that it is unjustified to apply the principle of 
excluded third in other than definite, finite cases. As 
Brouwer, himself, states his position on the principle of the 
excluded third

Then for a single such assertation x the enunciation 
of this principle is non-contradictory in intuition- 
istic as well as in classical mathematics. For, if 
it were contradictory, then the absurdity of x would 
be true and absurd at the same time, which is impos
sible. Moreover, as can easily be proved, for a 
finite number of such assertions x the simultaneous 
enunciation of the principle is non-contradictory 
likewise. However, for the simultaneous enunciation of 
the principle for all elements of an arbitrary species 
of such assertions x this non-contradictority cannot 
be maintained.

^  ibid.. p. 79.
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The prohlems. With. infinity, could then be resolved by shoeing

how the problems resulted from basing the work, on unfounded
abstract principles and from applying finitistic logical reasoning
in an infinite situation:

. . . they JBrouwer's predecessors] seem to have 
introduced the continuum by having recourse to some 
logical axiom of existence lacking sensory as well as 
epistemological evidence, such as the 'axiom of 
ordinal connectedness' or the 'axiom of completeness' 
. . .  in their further development of mathematics, 
they unreservedly continued to apply classical logic, 
including the principle of the excluded third. They 
did so regardless of the fact that the non-contradict- 
ority of systems thus constructed had become very 
doubtful after the discovery of the logico-mathematical 
antinomies, 5̂

Brouwer completed his treatment of infinite sets using what he 
termed the first and second acts of intuitionism, which are 
discussed below.

Where was this intuitionist program of Brouwer to begin?
If each object in the system had to be constructed, there had to 
be some primitive building blocks out of which the remainder 
of mathematics was to be constructed. For Brouwer, the primitives 
were the natural numbers, which were to be understood by a vague 
metaphysical concept which Brouwer called the "primal" or "basal 
intuition" of "two-oneness." The formation of this "primal

L. E. J. Brouwer, "Historical Background, . . p. 140.
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intuition" Brouwer termed "the first act of intuitionism":4^

FIRST ACT OF INTUITIONISM 
completely separates mathematics from mathematical 
language, in particular from the phenomena of language 
which are described by theoretical logic and recognizes 
that intuitionist mathematics is an essentially 
languageless activity of the mind having its origin 
in the perception of a move of time, i.e. of the falling 
apart of a life moment into two distinct things, one 
of which gives way to the other, but is retained by 
memory. If the two-ity thus born is divested of all 
quality, there remains the empty form of the common 
substratum of all two-ities. It is this common 
substratum, this empty form, which is the basic 
intuition of mathematics.

Brouwer realized, however, that if the first act of 

intuitionism were its only platform, intuitionistic mathematics 

would be quite weak in its power to prove theorems. The first 

act of intuitionism was designed to provide a secure basis for 

mathematics. Any result which could be derived from the first 

act would clearly have a secure foundation. Unfortunately, in 

gaining security, the first act sacrificed breadth of coverage.

A mathematics based solely on the first act would be a sterile 

mathematics. Thus Brouwer intervened with a second act of 

intuitionism.

In this situation [in consequence of the problems 
over the new mathematics introduced by formalism] 
intuitionism intervened with two acts, of which the

46 Ibid. pp. 140-141.
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first seems necessarily to lead to destructive and 
sterilizing consequences; then, however, the second 
yields ample possibilities for recovery and new 
developments.^

The second act was designed specifically to enable the

intuitionist to state and prove results about the real numbers.

Classical analysis of the real numbers was the heart of mathematics

at that time. Without the capability of formulating results

similar to those of classical analysis in his system, Brouwer

recognized that intuitionism would not be a viable alternative

to classical mathematics. The second act provides for the

formation of the real number system through an intuitionistic

version of Cauchy sequences, called infinitely proceeding

sequences, and through the formation of intuitionistically

defined sets, called species, of previously defined numbers.

. . .  a much wider field of development which includes 
analysis, and in several places far exceeds the 
frontiers of classical mathematics is opened by the 

SECOND ACT OF INTUITIONISM 
which recognizes the possibility of generating new 
mathematical entities:

Firstly in the form of infinitely proceeding 
sequences Pi,P2>*»»» whose terms are chosen more or 
less freely from mathematical entities previously 
acquired; in such a way that the freedom of choice 
existing perhaps for the first element pi may be 
subjected to a lasting restriction at some following 
Pv, and again and again to sharper lasting restrictions 
or even abolition at further subsequent Pv's, while all

^  Ibid., p. 140.
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these restricting interventions, as well as the choices 
of the pv's themselves, at any stage may be made to 
depend on possible further mathematical experience of 
the creating subject;

secondly in the form of mathematical species, i.e. 
properties supposable for mathematical entities 
previously acquired, and satisfying the condition that, 
if they hold for a certain mathematical entity, they 
also hold for all mathematical entities which have 
been defined to be equal to it, relations of equality 
having to be symmetric, reflexive and transitive; 
mathematical entities previously acquired for which 
the property holds are called elements of the species.

48• • •

Brouwer continues on to say that the second act of intuition

ism creates the possibility of introducing the intuitionistic 

continuum and the intuitionist n-dimensional Cartesian space. It 

also provides the technical answer to the difficulties with 

infinite sets. For, according to Brouwer's theory, the only

cardinalities that exist are finite, denumerably infinite,
49"ever denumerable, ever unfinished," and continuous. No one 

objected to any of these cardinalities. Under such restrictions 

the set-theoretic paradoxes could never even be formulated. For 

example, Russell's paradox involved the set S of all sets 

which are not elements of themselves. This set could never be 

constructed according to Brouwer's strict rules for constructivity. 

Even if it had been constructed, there was no intuitionistically

48 Ibid., p. 142.
49 L. E. J. Brouwer, "Over de Grondslagen . . .," statement 

XII attached to the end of the dissertation, p. 99, in Collected 
Works.
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means by which to check whether S was identical to any member 

of S .

Metaphysical Foundations: Intuitions of Space and Time

Although it seemed appropriate to use the natural numbers as 
a foundation for mathematics, many mathematicians of Brouwer's 
time (and of today as well) do not understand his reliance on this 
"primal intuition of two-oneness" which is described in the first 
act of intuitionism. To fully understand Brouwer's position, it 
is necessary to go beyond the boundaries of mathematics proper 
and examine his entire metaphysical system. This is necessary 
in Brouwer's case because he had a unified, systematic philosophy 

which began with a study of "consciousness," described the 
formation of language and social relations, and ended— as part 
of this systematic whole— with his philosophy of mathematics.
While Brouwer was primarily a mathe- :ician, not a philosopher, 
his metaphysical beliefs did enter in an essential way into both 
his philosophy and his practicing methodology of mathematics.
This metaphysical system is explained in his early book, Life,
Art, and Mysticism.^ But, even upon examination of this book,

Published in Amsterdam, 1903. Excerpts reprinted in 
Brouwer's Collected Works, I, pp. 1-10.
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Brouwer's position is hard to understand. To understand it 
fully, one would haye to trace its relation to the Butch semiotic 
movement, known as signifies, which was led by the philosopher- 
linguist Mannoury. Such an examination is outside the scope of 
this work.

One aspect of Brouwer'r philosophy that has more direct 
bearing on his mathematics is of importance here— his reliance 
on intuition of time as the basis of mathematics. Brouwer 
explicitly states that he took this position directly from Kant.

In Kant we find an old form of intuitionism, now 
almost completely abandoned, in which time and space 
are taken to be forms of conception inherent in human 
reason. For Kant the axioms of arithmetic and geometry 
were synthetic a priori judgements, i.e., judgements 
independent of experience and not capable of analytical 
demonstration; and this explained their apodictic 
exactness in the world of experience as well as in 
abstracto. For Kant, therefore, the possibility of 
disproving arithmetical and geometrical laws experi
mentally was not only excluded by a firm belief, but it 
was entirely unthinkable.^

In the Critique of Pure Reason, Kant argued that mathematical 
knowledge is gained by reason, through construction of concepts. 
That is, mathematics entails constructing, for every concept, an 
object which exhibits an intuition corresponding to the concept, 
and mathematical knowledge results from these constructions.

-*1 L. E. J. Brouwer, "Intuitionism and Formalism," quoted 
from P. Benacerraf and H. Putnam, o£. cit., p. 67.
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COSince Kant believed that mathematics is synthetic £  priori^
and "the only intuition which is giyen a priori is that of the

53mere form of appearances, space and time," mathematics is the
study of the construction of objects according to our intuitions
of space and time. To elucidate his position, Kant described
the procedure a geometer would go through in discovering (and
proving) the relationship between the sum of the angles of a

54triangle and a right angle:
He at once begins by constructing a triangle. Since 
he knows that the sum of two right angles is exactly 
equal to the sum of all the adjacent angles which can 
be constructed from a single point of a straight line,
he prolongs one side of his triangle and obtains two
adjacent angles, which together are equal tc two right 
angles. He then divides the external angel by drawing 
a line parallel to the opposite side of the triangle, 
and observes that he had thu? obtained an external 
adjacent angle which is eqvai to an internal angle—  
and so on. In this fashion, through a chain of infer
ences guided throughout by intuition, he arrives at 
a fully evident and universally valid solution of the 
problem.

Kant’s reputation as a philosopher, the realistic nature of 
the position, and its similarity to Greek constructivity made

52 ||By "synthetic" Kant meant a proposition to be true by 
virtue of material rather than logical reasons. By "a priori" 
he meant that a truth could be known without (physical) experience

I. Kant, Critique of Pure Reason, A720 (=B748).
54 Ibid., A716 (=B743).
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Kant's philosophy of mathematics popular among practicing mathe

maticians fop the first half of the nineteenth century. However, 
what the mathematicians seemed to hold in common with Kant was 
not his overall metaphysical system but rather the specific 
beliefs that mathematics in some essential way was the study of 
constructed objects and, second that these constructions were made 
possible by our intuitions of space and time.

Many mathematicians specifically mentioned Kant when descri
bing their philosophy of mathematics; but, again, it was for the 
specific ideas about intuitions of space and time. William 
Rowan Hamilton, the mathematician, based his algebraic theory of 
complex numbers and quaternions on the intuition of time.^ 
Although it is believed that Hamilton acknowledged the role of 
intuition of time in his mathematical theory before he read the 
Critique of Pure Reason, it is clear that he used Kant to bolster 
his position. Hamilton wrote^ that reading Kant's Critique of 
Pure Reason "encouraged [him ] to entertain and publish this

55 See Michael Crowe, A History of Vector Analysis. p. 25for details. 
56 Sir William Rowan Hamilton, Lectures on Quaternions, 

Dublin, 1853, preface, p. 10.
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view . . .  [on complex numbers and quaternions].'1 Or again:

. . . and my own convictions, mathematical and meta
physical, have been so long and so strongly converging 
to this point (confirmed no doubt of late by the study 
of Kant's Pure Reason), that I cannot easily yield to 
the authority of those other friends who stare at my 
strange theory.57

That algebra is the science based on the intuition of time
58Hamilton makes clear:

. . .  a SCIENCE of Algebra: a Science properly so
called; strict, pure, and independent; deduced by valid 
reasonings from its own intuitive principles; and thus 
not less an object of a priori contemplation than 
Geometry . . .

59And a little later:

The argument for the conclusion that the notion of 
time may be unfold.ed into an independent Pure Science, 
or that a Science of Pure Time is possible, rests 
chiefly on the existence of certain a priori intuitions, 
connected with the notion of time, and fitted to become 
the sources of a pure Science; and on the actual 
deduction of such a Science from those principles, 
which the author conceives that he has begun.

The work to which Hamilton refers is "Theory of Conjugate

Functions, or Algebraic Couples; with a Preliminary and Elementary

^  Quoted in Reverend Robert Perceival Graves, The Life of 
Sir William Rowan Hamilton, vol. II (of 3 vol.), 1882-89, p. 142.

58 Sir William Rowan Hamilton, "Theory of Conjugate Functions, 
or Algebraic Couples; with c Preliminary and Elementary Essay 
on Algebra as the Science of Pure Time," Transactions of the 
Royal Irish Academy, 17 (1837), pp. 293-422. See p. 295 for the 
quotation.

59 Ibid., pp. 296-297.
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Essay of Algebra as the Science of Pure Time."

The development of non-Euclidean geometry dealt such a heavy

blow to Kant's philosophy of mathematics that it fell into

general disrespect in the mathematics community. Kant had argued

that since our intuitions of space are a priori and universally

the same among people, there could be only one mathematics

constructed from this intuition. But Euclidean and non-Euclidean

geometries were equally valid from a mathematical point of view

while being mutually contradictory. Even so, this disrespect

was not shared with equal vigor among the philosophers and was

certainly not universal among the mathematicians.^ There were

strong neo-Kantian philosophical schools— the most notable being

in Marburg— in the last decades of the nineteenth century, and

these schools adhered closely to Kant's philosophy of mathe- 
61matics.

Brouwer's reaction to the problem of reconciling Kant's 

position with mathematical developments was to abandon intuition

^  For example, Hilbert argued, as one of the extra theses 
to be submitted with his dissertation, that non-Euclidean 
geometry did not require the rejection of Kant's philosophy of 
mathematics. For a discussion of this point, see Constance Reid, 
Hilbert, 1970.

^  For more details and extended references, see Lewis 
White Beck, "neo-Kantianism," Encyclopedia of Philosophy, 1967, 
Vol.V, pp. 468-473. As a recent example of a product of this 
neo-Kantian school, see E. Cassirer, Philosophy of Symbolic 
Forms, 3 vol., 1955-1957.
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of space, which had been shown untenable by the development of
non-Euclidean geometry, and to focus solely on intuition.

However weak the position of intuitionism seemed to 
be.after this period of mathematical development I of non-Euclidean geometry^ , it has recovered by 
abandoning Kant’s apriority of space but adhering the 
more resolutely to the apriority of time. This neo- 
intuitionism considers the falling apart cf moments 
of life into qualitatively different parts, to be 
reunited only while remaining separated by time, 
as the fundamental phenomenon of the human intellect, 
passing by abstracting from its emotional content 
into the fundamental phenomenon of mathematical 
thinking, the intuition of two-oneness. This intuition 
of twg-oneness, I is] the basal intuition of mathsmatics. 
• • •

So, Brouwer’s ''basal intuition" of "two-oneness," although 
appearing unduly metaphysical, out of place, and irrelevant to 
mathematics, was actually only a radical extension of a meta
physical principle which had been held by most nineteenth- 
century mathematicians and had a long tradition beginning in 
modern times with Kant.

62 L. E. J. 3rouwer, "Intuitionism and Formalism," quoted from 
Benacerraf and H. Putnam, o£. cit., p. 69.
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The Greek Tradition of Mathematical Philosophy

It can be argued that the close relation between mathematics 
and intuitions of space and time can be traced past Kant all the 
way back to the classical Greeks. This relation is best under

stood in Greek times by examining Greek attitudes toward infinity.
Greek mathematical philosophy revolved around a concern with

the infinite. The actual infinite was regarded as a vague term
whose use led to indeterminant results and which was out of touch
with the material world and our spatial and temporal intuitions
of the world. This position seems to have developed in three
roughly defined stages. In the earliest period infinity

(apeiron) was equated with unboundedness (as the term was used
in the discussion of divine attributes) and with indeterminateness
(according to the Pythagorean duality of principles). According
to the theological argument, infinite was the ascription given
to divine attributes. Thus apeiron was a term used to describe

63things not of this world. The Pythagoreans ordered knowledge 

dualistically, by formulating explanations in terms of the

63 For a discussion of this point, see the controversial, 
but interesting, Theo Sinnige, Matter and Infinity in the 
Presocratics and Plato, 1968.
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interplay of opposing principles. One such pair of principles 
was peiras and apeiron. In a philosophical sense, the former 

represented the restrictions placed on each being, especially the 

spatial and temporal limitations which define material objects. 
Contrary to this, apeiron represented indeterminateness. No 
material object or its attributes were represented by apeiron. 

Thus, infinity was not a term to apply to the mathematical 
examinations of this world and so -was not relevant to mathematics. 
The relevance of this Pythagorean dichotomy was made explicit in 
the Pythagorean study of repeated geometrical figures, known as 
gnomon:

The elements of number are the even and the odd, the 
latter of which is well-determined whereas the former 
is undetermined apeiron . .
The Pythagoreans identify the indeterminate and the 
even; for, they say, when this is taken up into 
things and is limited by the odd, it brings indetermin
ateness to the beings; a proof of this is what happens 
to numbers; for when the gnomons are being laid around 
the one, or in the other way, in the latter case the 
figure is constantly changing, in the former it remains 
the same.^

The consensus of opinion^ is that the gnomon "laid around the

Aristotle, Metaphysics A, 986a 17-19.
65 Aristotle, Physics III 4, 203a 10-15.
^  There is a bit of variation in interpretation here. See 

Sinnige, ojk cit. He provides an extensive bibliography to the 
secondary sources.
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one" refers to a geometrical figure constructed in a series of 
stages by beginning with one object and adding each time the 
successive odd number of objects in the following manner:

whereas the gnomon constructed "in the other way" begins with 
two objects and adds successive even numbers of objects in the 
following manner:

At the end of each stage, the gnomon "laid around the one" 
consisted of a perfect square, the ratio of whose sides was 
stable at one; whereas, at the end of each stage the gnomon 
constructed "in the other way" consisted of a rectangle of 
dimension nx(n+l) , whose ratio was always approaching, but 
never attaining, a ratio of one. This repeated change of shape, 
ad infinitum, led the Pythagoreans to associate the infinite 
process, as well as evenness, with indeterminateness (or shape) 
and with instability (in the shape of the figure)-

Thus the Pythagoreans associated infinity, in particular

o o o o
o o o o

o o o o o
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infinite processes, with, the negative concept of indeterminate
ness: that infinite processes, in particular those of mathema
tics, do not lead to a determinate result. In fact, with bcth 
the deistic and Pythagorean definitions of apeiron, there is a 
suggestion— albeit vague— that only the finite finds a place in 
the material world.

The second phase in the development of the Greek concept of

infinity was initiated by the paradoxes of Zeno. Zeno's paradoxes
reinforced the negative connotation of infinity by showing that
the introduction of infinite addition (of terms) and infinite
division (of line segments) into physical problems conflicted with
out perceptions of the workings of the material world. The force
of the paradoxes results from conflicts with our intuitions of
real time and real space. The first two demonstrate the
paradoxes of infinite divisibility of a continuous whole, while
the last two demonstrate the paradoxes associated with assuming
that there are infinitesimal segments in the real world. For
example, the first paradox, known as dichotomy, is stated by
Aristotle as follows:^

that which is in motion must first reach a point half
way before it will reach its goal.

^  Aristotle, Physics VI 239b 9-14.
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Aristotle explains the force of this paradox as it involves 
infinity:

It is in the same way that we must meet (I) those who 
ask in terms of Zeno's argument whether it is a fact 
that you must always first traverse the half of the 
distance, that the halves are infinite in number, 
and that you canggt traverse an infinite number of 
distances, . . .

Before any distance is traversed, a distance half as great must 
first be traversed, thus leading to an infinite regression and the 
conclusion that an infinite number of segments must be traversed 
in a finite amount of time— which is impossible according to our 
intuitions of space and time. Zeno formulated three other 

paradoxes,**® the Achilles, the arrow, and the stade, designed to 
contradict our intuitions of space and time in a similar manner. 
Zeno was important because he made explicit the contradictions 
which would accrue if infinite processes were applied in the 
physical world and because he demonstrated that any application of 
infinite addition or infinite divisibility by mathematicians 
would lead to physical absurdities.

The third and culminating period in the development of the

Aristotle, Physics I 263a4-b9.
Aristotle describes the other paradoxes and explains them 

as follows: second paradox (Achilles)---stated in Physics Z9
239b 14-18, explained in Physics I 263a.4-b9; third paradox 
(arrow)— stated in Physics VI 239b5-9; fourth paradox (stade)—  
stated in Physics VI 239b33-36.
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Greek concept of infinity was Aristotle’s theory of the potential 
infinity and its application in Euclidean geometry. According 
to Aristotle, one must distinguish between the actual infinite and 

the potential infinite. The acutal infinite does not exist in 
the material world. Only the potential infinite exists, and it 
is only intended for use as a convenient way of speaking— not as 
materially existing. In fact, when one used the term "infinite," 
one meant by it the indeterminately large, as large as the 
circumstances demanded, but nevertheless the definitely finite.
This usage is well-illustrated in Euclid's Elements. Rather than 
discuss (infinite) lines, as we do today in geometry, Euclid 
discussed line segments. The first postulate of Book I7® permits 

a line segment to be drawn between any two points. The following 
postulate permits any line segment to be extended in a straight 

path to any larger line segment. In the discussion on parallel
i s m ,  ̂ 3- Euclid called two lines (by which he meant the line segments

70 According to T. L. Heath's translation, the two postulates 
(Book 1, Postulates 1,2) are:

"Let the following be postulated:
1. To draw a straight line from any point to any point;
2. To produce a finite straight line continuously in a 

straight line."
See Heath for commentary. See Book I, Propositions 11, 16, 20 
for the usage.

71 See Book I of the Elements. For usage, see Propositions 
27 and 29.
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and any continuation along the same straight path) parallel if,

no matter how far you extend the line segments, they do not meet
at a point. Never is there any discussion of actual infinite

lines. Line segments are merely extended far enough to do the
construction required for the proof.

The Greek attitude toward the infinite was important because
it was adopted by Western mathematics and was not seriously
questioned until the publication of Cantor's work. The typical
attitude of mathematicians prior to Cantor is elucidated by 

72Gauss:
I protest against the use of an infinite quantity 
as an actual entity; this is never allowed in mathe
matics. The infinite is only a manner of speaking, 
in which one properly speaks of limits to which 
certain ratios can come as near as desired, while 
others are permitted to increase without bound.

Eighteenth and nineteenth century mathematics had adopted from the
Greeks a number of specific beliefs concerning infinity. These
included: that actual infinity is inconsistent and indeterminant;
that it does not accord with human intuitions of physical reality
(time and space). and that mathematics must accord with this
physical reality, in particular, that it must accord with our

72 Letter from C. Gauss to F. Schumacher, July 12, 1831, 
in C. Gauss, Werke, 8, p. 216, as translated in M. Kline, op. 
cit., p. 993.
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intuitions of space and time. This led those mathematicians to 
the Greek conclusion that the use of actual infinity must be 
prohibited in formal, rigorous mathematics. It was thought that 

the actual infinite could be used as a convenient, informal way 
of considering mathematical problems, but that actual infinity 
must be replaced in rigorous mathematics by potential infinity 

(indefinitely large, but finite lines, figures, processes). More
over, it was felt that the method of proof must not refer to 
infinite processes, such as actual infinite limiting processes. 
Rather, reference in proofs must always be to finite figures and 
their finite properties, and knowledge about the infinite, for 
example about limits of infinite series, must be inferred from the 
finite differences in finite figures as they get indefinitely

70large. J
Thus, Brouwer, who strongly opposed the use of actual 

infinity, can be seen as continuing this long tradition starting 
with the Greeks. In fact, many of the same mathematicians who 
so opposed Brouwer's intuitionism had been reluctant to accept 

Cantor's theory of infinite numbers because of beliefs which 

stemmed from the same root as Brouwer's. It was only when Cantor

73 The origin of this last proposition can be found in the 
Greek method of exhaustion, &s practiced by Eudoxes and 
Archemedes.
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demonstrated the power and utility of his methods in solving 
problems in a variety of areas of mathematics that the doubts 

about infinite numbers began to subside in the mathematics 
community.

Varieties of Constructivity

Although the intuitionist program has met with intense 
criticism from the mathematics community, other people before and 
since Brouwer have developed programs which emphasized the 
construction procedure as the basis of a mathematical system.
Such programs are called constructivist. The central tenet of 
mathematical constructivity is that any legitimate mathematical 
object must be constructed in a finite series of stages, beginning 
with a small number of primitively acceptable objects, and 

proceeding from one step to the next by one of a few acceptable 
means of manipulation. The underlying idea is that for a mathe
matical object to exist, it must be possible to build it up from 
basic building blocks by steps, each of which can be compre
hended by the mind. Constructivity in this respect is in direct 
conflict with Platonism, which holds that mathematical objects 
exist independent of our minds: that they are to be discovered, 
not invented. Most practicing mathematicians, uniike Brouwer, 
have tended to be Platonists. Related to this, the methods of
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the constructivist are in direct conflict with reductio ad 
absurdum proofs where an object is proved to exist or to have 

some other property, not through a construction, but through 
the logical reasoning that, if it did not exist or have that 
property, one could derive a logical contradiction.

It is not surprising that constructivity can be expanded to 
a systematic philosophy of mathematics which provides a coherent 
theory of mathematical ontology and epistemology. In fact, this 
pos'ition, especially as it has been argued by Brouwer, has been 
a major concern of the philosophers of mathematics. However, 
there is another aspect of mathematical constructivity; it can be 
considered a methodological tenet utilized by the practicing 
mathematician. It is this aspect which is emphasized here. Of 
course, the two aspects are not entirely separable. For some 
practitioners of mathematics it is their philosophical system 
which determines their practicing methodology. But for all 

strict methodological constructivists, there is at least some 
vague philosophical belief underlying methodology. However, we 
are concerned here with constructivity as it relates to mathe
matical practice. Brouwer's intuitionism is of interest because 
it provided a research program in mathematics and a mathematical 

answer to the problems concerning infinity and abstraction.
Constructivism also has a long tradition, beginning with the 

classical Greeks. In fact, the history of constructivism is
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closely intertwined with the negatiye attitudes towards infinity 
and also with the importance of intuitions of space and time in 
mathematics. The constructivist position of the Greeks was most 

carefully formulated in Aristotle’s philosophy and exhibited 
in Euclid's Elements.

Aristotle was clear about his requirements for ontological 
status for mathematical objects. He argued that a definition 
tells what an object is, but does not establish its existence; 
and that an object may be defined without existing. For 
Aristotle, existence had to be proved, except in a few special 
cases (such as points and lines) where existence was assumed 
along with other first principles. The proof of existence was 
to be by construction.

As influential as Aristotle was, he was not a practicing 
mathematician. In fact, Aristotle was apparently ignorant of the 
higher mathematics of his day. His position towards mathematical 

methodology was probably adopted from Eudoxes. In any case, 
this position is illustrated by the methodology of the Elements. 
Geometry dominated Greek mathematics, and it was the methodology 
of geometry that dominated mathematical methodology. The 
approach was axiomatic. Euclid allowed points, lines, and 
planes as the primitive objects. He then developed five postu
lates and five common notions (axioms) which provide the basic 
rules for the construction of more complicated objects from
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points, lines and planes, and which also allowed one to prove 

that the newly formed objects have the properties they were 
intended to have. For example, the first three postulates 
allow the construction of line segments between two points, the 
extension of an existing line segment, and the construction of 
a circle with given center and radius; while the common notions 
provided the rules for addition, equality, and inequality, such 
as (common notion 2) equals added to equals are equal or (common 

notion 5) the whole is greater than the part. The construction of 
more complicated objects proceeded from already existing objects 
by straight-edge and compass techniques.

Concern over the parallel postulate and the subsequent 
development of non-Euclidean geometry led late nineteenth-century 
mathematicians to reexamine Euclid's work. This examination 
confirmed that Euclid had not been precise about what was to be 
accepted as primitive or about what steps could be taken in a 
construction. As mentioned above, these mathematicians attempted 

to remove the logical gaps in the Elements with a modern 
axiomatization of the subject, which more clearly listed all of 
the primitive objects and all of the required postulates and 
axioms. Thus it is hard to determine precisely what primitives 
Euclid really allowed and in what way these primitives were to 
be combined to produce more complicated objects.

One point of note, especially considering the disputes over
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the technique in the late nineteenth century, is that Euclid 
never proved existence by a reductio ad absurdum argument. So, 
not only did Euclid establish in every case that a construction 

existed, he also exhibited the construction. Even when Euclid 
was showing that exactly so many of a particular type of object 
existed and that, no more exist, he did not resort to any of the 
various indirect methods of proof used frequently in modern 
mathematics. Rather, he constructed the objects that did exist 
and showed directly how the construction insured there could be 
no others. Such a technique is best illustrated in Euclid’s
proof that exactly five regular solids exist. This is the final
and culminating proof in the Elements. In Book XIII, Euclid 
constructed the regular solids: tetrahedron (Proposition 13),
cube (Proposition 15), octahedron (Proposition 14), cosahedron 
(Proposition 16), and dodecahedron (Proposition 17)— all by ruler 
and straight-edge constructions. In Proposition 18 Euclid com

pared the five figures. After comparing the properties and the 

way in which these five figures are constructed, he wrote:

I say that no other figures, besides the said five
figures, can be constructed which is contained by 
equilateral and equiangular figures equal to one 
another.

74 Euclid, Elements, Book I, Proposition 18. Sir Thomas 
L. Heath, translation.
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The proof relied on the way in which the five figures them
selves were constructed, and not on some abstract property which 
would not hold if there were more than these five:^

For a solid angle cannot be constructed with two 
triangles, or indeed planes.

With three triangles the angle of the pyramid is 
constructed, with four the angle of the octahedron, 
and with five the angle of the icosahedron: 
but a solid angle cannot be formed by six 
equilateral and equiangular triangles placed 
together at one point,
for, the angle of the equilateral triangle being 
two-thirds of a right angle, the six will be 
equal to four right angles:
which is impossible, for any solid angle is contained 
by angles less than four right angles.

For the same reason, neither can a solid 
angle be constructed by more than six plane angles.

By three squares the angle of the cube is 
contained, but by four it is impossible for a solid 
angle to be contained,
for they will again be four right angles.

By three equilateral and equiangular pentagons 
the angle of the dodecahedron is contained; 
but by four such it is impossible for any solid 
angle to be contained,
for, the angle of the equilateral pentagon being 
a right angle and a fifth, the four angles will 
be greater than four right angles: 
which is impossible.

Neither again will a solid angle be contained 
by other polygonal figures by reason of the same 
absurdity.

Therefore, etc.

^  Ibid., Book I, Proposition 18.
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As long as these was no conflict between an avowal of 

constructivist and contemporary mathematics, mathematicians 
were willing to avow a constructivist philosophy. Such was the 
case until the last third of the nineteenth century. Until that 
time the mathematical problems being examined required no use of 
actual infinity, no highly abstract objects, and little use of 
proofs of existence by contradiction. Although there was no 
systematic listing of the constructive techniques that one was 
permitted to use in mathematics (as Brouwer provided for 
intuitionistic mathematics) and although there were some 
developments in analysis that Brouwer would not have accepted 
as intuitionistically legitimate, nineteenth-century mathe
maticians did believe it was appropriate to build up all objects 
which they studied.

However, the almost unconscious acceptance of this moderate 
version of constructivity began to change in the 1870's. Kronecker 
provided the first instance of change, but his pattern has been 
repeated numerous times since then. The conscious avowal of a 
constructivist methodology has arisen several times when there has 
been concern over the legitimacy of new results in mathematics, 
especially if they occur as the product of some new type of 
mathematical object or new methodology. As a conservative 
reaction, to protect the soundness of mathematics, mathematicians 
would revert to the method that had worked so well for Euclidean
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geometry and which had been the model for classical mathematics 
in the eighteenth and early nineteenth centuries, constructivism. 

Then the object(s) or principle(s) in question would either be 
shown to have the desired properties or be rejected from 
mathematics since one then would start with primitive objects 
acceptable to the mind and proceed with steps that were acceptable 
to the mind. In this way the nature of the object could be more 

fully understood and be accepted, or it could be branded as 
incomprehensible and thus inadmissable.

Kronecker, in the 1870's and 1880's, was the first to 
choose consciously a constructivist position in the face of 
problems he saw in new developments in mathematics. He was 
worried about the development of all the new number systems, 
especially since they did not seem to have much to do with 
physical reality. In particular, Kronecker was concerned about 
the development of quaternions by Hamilton in the 1840's, of 

complex numbers and the generalization of algebra to the study 
of the manipulation of symbols by DeMorgan in the 1840's, of 
matrices by Cayley in the 1850's, and of vector analysis by
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76Maxwell in the 1870's and by Heaviside and Gibbs in the 1880's.
Kronecker's approach was to try to save these various new 

number systems (from meaninglessness) by showing how they could 
be built up from the natural numbers and its arithmetic. His 
theory is summed up in his famous aphorism, "God made the 
integers; all else is the work of..man." By means of definitions 

in terms of natural numbers, the negative, rational, real, and 
complex numbers were to be defined and, from there, the remainder 
of classical mathematics, including the rest of these new number 
systems, was to be reformulated in terms of these definitions. 
This was the program he set for himself and his students.^

Kronecker insisted that all legitimate mathematics must be 
capable of reduction to the natural numbers. The force of 
Kronecker's approach and its variance from the classical

See Hamilton, Lectures on Quaternions (1853); A. DeMorgan, 
Trigonometry and Double Algebra (1849); A. Cayley, "A Menoir 
on the Theory of Matrices," Journal fUr die Reiae und Angewandte 
Mathematik, 50 (1855), pp. 282-285, in Cayley's Collected 
Mathematical Papers, 2, pp. 475-496, and many following papers;
J. C . Maxwell, A Treatise on Electricity and Magnetism, 1873;
0. Heaviside, Electromagnetic Theory, 3 vol., (1893, 1899,
1912); and J. W. Gibbs, "Elements of Vector Analysis," 1881, 
privately published pamphlet, Yale University, in Gibbs'
Scientific Papers, 2, 17-90. Also see J. W. Gibbs and E. B. 
Wilson, Vector Analysis (1901). A general overview of these 
developments can be found in Michael Growe, A History of Vector 
Analysis (1967).

^  See L. Kronecker, "Uber den Zahlfegriff," Journal fUr die 
Reine und Angewandte Mathematik, 101, 1887, pp. 337-355. Also in 
Warke, 3, pp. 251-274.
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approach is best appreciated by examining Kronecker's contro
versies with classical mathematicians. Three are of special 

importance.
During the nineteenth century numerous different proofs

78were given for the fundamental theorem of algebra. Many of 
these proofs made use of profound results from the theory of 
functions of a real or complex variable or were developed from 
topological facts. Kronecker strongly objected to these proofs. 
According to Kronecker, since arithmetic was the starting point 
of all of mathematics, it was a petitio principii to use results 
from analysis or topology to prove a purely algebraic result, such 
as the fundamental theorem of algebra.

The second controversy involved Hilbert's proof of Gordan's 
conjecture of the existence of a finite basis in invariant space 
theory. Hilbert proved the existence of a finite basis, not by 
constructing it, but by a purely existential argument. That is, 
Hilbert showed that logical reasoning from the premises of 
invariant space theory required a finite basis. It was very 
difficult to construct finite bases, and Kronecker and Gordan 
had succeeded only after much work under very special

7 0 The fundamental theorem of algebra states that every 
polynomial equation with complex coefficients has a complex 
number root.
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circumstances. Now Hilbert showed that every one of an infinite 

number of cases must each have a basis without invoking a single 
conviction! Kronecker and Gordan refused to accept Hilbert's 
proof even though they had no objection to the logical steps 
of the proof. As Gordan put it, "this is not mathematics; this 
is theology."

The third controversy was Kronecker's famous dispute with 
Cantor over the transfinite numbers. Kronecker objected to numbers 
which could not be reached by proceeding from hia natural numbers. 
Kronecker, in fact, was Cantor's earliest and most vehement 
critic. He was so opposed to Cantor's work that he insured that 
Cantor's publications would not appear in the best German mathe
matics journals. Cantor even attributed his unimpressive univer
sity position at Halle to Kronecker's influence.

The situation of Brouwer is analogous to that of Kronecker. 
Brouwer was concerned over abstraction in mathematics, in 
particular the use of a formalist approach, and also over the use 
of infinity. He adopted the same sort of conservative methodology 
as Kronecker along constructivist lines, so as to save mathematics 
from suspect results. Because both positions were not merely 
philosophy, but had important mathematical consequences, 
mathematicians hardened quickly in their opinions either for or 
against both Kronecker's and Brouwer's results.

Actually, there have been many other constructivist
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positions besides those of Kronecker and Brouwer. In most cases 
the positions seem to have been adopted under similar circum

stances as those described above. Among the most important are 
the French intuitionists and their position on set theory,
Hilbert's metamathematics for his formalist program, Herbrand's 
finitism, Skolem's primitive recursive arithmetic, Esenin-Volpin's
ultrafinitism, and Bishop's constructive analysis. Esenin-

79 80Volpin's and Bishop's work are modem examples of construct-
ibility and are not relevant here. Hilbert, Skolem, and Herbrand
are examined in the next chapter. However, the French intuitionist
position, which was the direct result of the powerful principles
(Axiom of Choice, Power Set Axiom) used to create large and
abstruse sets, was a direct reaction to the same problems
Brouwer saw in the new mathematics and is discussed in the next
section.

A. Esenin-Volpin, "Le Programme ultra-intuitionniste des 
fondements des mathematiques," Infinitistic Methods. Warsaw,
1961, pp. 201-223. Also, "The untra-intuitionistic criticism and 
the antitraditional program for foundations of mathematics,"
■♦.n Kino, Myhill, and Vesly, Intuitionism and Proof Theory, 1970. 
pp. 3-4".

80 See E. Bishop, Foundations of Constructive Analysis,
1967. A, so see E. Bishop, ''The Crisis in Contemporary Mathe
matics ," Historia Mathematics, 2 (1975), pp. 507-517.
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Other Solutions to the Foundational Crisis

Brouwer was not a lone wolf crying about the problems of 
abstraction and infinity. The problems did not attract the entire 
mathematics community because many of the active research areas 
had no use for any of these suspect principles or objects. How
ever, as discussed above, these principles found heavy use in set 

theory, topology, measure and integration theory, and functional 
analysis. The scores of attempts to resolve the set-theoretic 
paradoxes indicate just how many mathematicians were worried over 
these issues. There were also numerous attempts to determine 
the power and the foundation of the axiom of choice. Discussed 
below are some of the more important attempts to reconcile the 
problems in set theory, concerning both the paradoxes and the 
axiom of choice. These can be seen as alternatives to Brouwer's 
solution to the problems in the new mathematics.

In 1904, Zermelo,®^ in reaction to Kdnig's erroneous proof®^ 
that the set of real numbers could not be well-ordered, provided 
a proof that any arbitrary set M could be well-ordered. This

81 E. Zermelo, "Beweis, dass jede Menge wohlgeordnet werden 
kann," Mathematische Annalen. 59 (1904), pp. 514-516.

82 J. Kflnig, "Zum Kontinuum—Problem," Verhandlungen des 
Dritten Internationalen Mathematiker-Kongresses in HeideJbe^ —  
Leipzig, 1905, pp. 144-147. **
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required, for an arbitrary set M , that there be an ordering of
the elements of M such that every subset of M had a least

83element. In his proof, Zermelo used the Axiom of Choice in a 

fundamental way to make a possibly infinite number of choices 
of these least elements.

84A number of objections appeared to the proof in the issue

of-ifethematische Annalen following the one in which Zermelo
published his proof. Among the more interesting of the negative

85responses were those of the French empiricists, a group of
French analysts of a similar mind who were working on the same

sort of problems in functional analysis and measure theory. One
member of the group, Borel, objected that Zermelo had not proved
the Well-Ordering Theorem, but only proved the equivalence, for
an arbitrary set M , of two tasks: A. to well-order M ;
B. to choose a definite but arbitrary member m' from each
non-empty subset M* of M . This, Borel claimed,

cannot be considered as providing a general solution to 
problem A. In fact, in order to regard problem B as
resolved for a given set M, one needs to give a means,

83 Remember, the Axiom of Choice states that, for any 
collection of non-empty sets, one can choose a representative 
element from each set such that no two representative elements 
are the same.

Mathematische Annalen. 60 (1905).
85 This informal group consisted of Borel, Lebesque, Baire, 

their students, and some of thair lesser-known colleagues.
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at least a theoretical one, for determining a distin
guished element m' from an arbitrary subset M 1; and 
that problem appears to be among the most difficult, if 
one supposes, for the sake of definiteness, that M 
coincides with the continuum [the set of all real 
numbers].^

In fact, Borel took an even harder line against the proof by 
insisting that "any argument where one supposes an arbitrary
choice to be made a non-denumerably infinite number of times . . .

87[is] outside the domain of mathematics." Hadamard, another
88of the French empiricists, pointed out that what was required 

to make the proof legitimate was to insure that the choice 
function y, by which these least elements were chosen, was 
"effectively defined" or, in other words, that the function be 
constructible.

Baire, also one of the French empiricists, adopted an even 
more radical line than Borel. For Zermelo to carry out his proof, 
he had to apply the Axiom of Choice to the collection of non
empty subsets of M . Baire objected even to the admissability of

86 E. Borel. "Quelques remarques sur les principes de la 
theorie des ensembles," Mathematische Annalen, 60 (1905), 
pp. 194-195. Quoted as translated in Gregory H. Moore, "The 
Origins of Zermelo * s Axiomatization of Set Theory," Journal of 
Philosophical Logic 7 (1978), p. 312.

87 E. Borel, op. cit., p. 145. Quoted as translated in 
G. H. Moore, o£. cit., p. 313.

88 See R. Baire, E. Borel, J. Hadamard, and H. Lebesque, 
"Cinq lettres sur la theorie des ensrmples," Bull. Soc. de 
France 33 (1905), pp. 261-273.
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forming the set S of non-empty subsets of M and, therefore, 
to the admissability of such a choice function y:S-»M . For 
Baire, an infinite set of any cardinality was "virtual," i.e., 

existing only as it was defined by certain conventions. Thus 

the structure of such a set was indeterminate. In particular, he 
believed "it is false . . .  to consider the subsets of this set 
[M] as given.

A third member of the French school, Lebesque, also took a 
constructivist position. He argued that an object can only be 
considered to exist when it has been defined in a finite number 
of words. Yet, Zermelo had not defined the choice function y 
uniquely, nor had he shown that the subsets M' of M were 
defined in a unique way. For these reasons he rejected Zermelo's 
proof.

90During 1907, in reaction to all the controversy over his 
well-ordering axiom, Zermelo developed an axiomatic system for 

set theory. Zermelo's hope was that an explicit statement of the 
principles used and a formal proof within an axiomatic system 
would convince his critics that he had a legitimate proof of

♦
89 Ibid., p. 264. Quoted as translated and excerpted in 

G. H. Moore, 0£. cit., p. 313.

See E. Zermelo, "Neuer Beweis fUrdie MBglichkeit einer 
Wchlordnung," Mathematische Annalen, 65 (1908), pp. 261-281.

R eproduced  w ith perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

66

the well-ordering principle. Zermelo's axiomatization was a
significant improvement over Cantor's "naive" set theory, for

91Cantor's attempt to define a set was vague and inapplicable:
Definition: By a "set" we mean any collection M into
a whole of definite, distinct objects m (which are 
called the "elements" of M ) of our perception 
[Anschauung] or of our thought.

Zermelo believed that his axiomatic system had another virtue in
92that the Axiom of Separation prevented the formulation of the

93set theoretic paradoxes. Thus, Zermelo sought to proscribe 
set-theoretic procedures in the form of axioms for the formation 
of sets which would demonstrate that the Axiom of Cnoice and its 
uses were legitimate while prohibiting the set-theoretic 
paradoxes.

Russell used a rather different approach to resolve the 
set-theoretic paradoxes. His program for mathematics, logicism, 
like Brouwer's intuitionism, was shaped by a larger philosophical

G. Cantor, "Beitrllge zur Begrundung der transfiniten 
Mengenlehre," Part I, Mathematische Annalen, 46 (1895), p. 482, 
as translated in Contributions to the Founding of the Theory of 
Transfinite Numbers, translated by P. E. B. Jourdain, Chicago, 
1915.

^  The Axiom of Separation (Aussonderung) states: For any
set S and any predicate P which is meaningful for all 
elements of S , there exists a set Y that contains just those 
elements X of S which satisfy the predicate P.

^  See A. Fraenkcl and P. Bernays, Axiomatic Set Theory, 
for details.
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program. But also like intuitionism, logicism had decided
significance for the practice of mathematics as well as for
philosophy. Russell's logicist program was formulated in his
1903 Principles of Mathematics and carried out, with Whitehead, in
the three-volume Principia Mathematica (1910-1913). According to
the logicist program, mathematics can be reduced to a mere
extension of logic. The plan was to show that all of mathematics
could be deduced from a set of axioms describing logical

principles without need for extra axioms of a specifically
mathematical character. An important part of the logicist program

94was the theory of types. It was intended to resolve the set- 
theoretic paradoxes, whose significance Russell had made apparent 
to the mathematical and philosophical communities with his 
Russell set in Principles of Mathematics. The idea underlying 
the theory of types was to categorize all propositions in such a 
way that variables in a type n proposition must all be of type 
less than n . In this way, formulation of the Russell set is 
impossible.

These fallacies [set-theoretic paradoxes] . . . are to
be avoided by what may be called the "vicious-circle

^  The theory of types was first formulated in 1906. See 
Russell's Autobiography, I, pp. 194 ff. for the history of the 
development of the theory of types. For a technical description, 
see B. Russell, "Mathematical Logic as Based on the Theory of 
Types," American Journal of Mathematics, 30 (1908), pp 222-262.
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principle"; i.e., "no totality can contain members 
defined in terms of itself." This principle, in our 
technical language, becomes: "Whatever contains an
apparent variable must not be a possible value of that 
variable." Thus whatever contains an apparent variable 
must be of a different type from the possible values 
of that variable; we will say that it is of a higher 
type.9^

Problems with the Solutions

Thus there were a number of conservative reactions to the 
problems created by abstraction and infinity in mathematics. 
Brouwer's intuitionism sought to avoid the problems by restruct
uring mathematics with a constructivist methodology. The French 
intuitionists called for a constructive restriction in the use of 
the axiom of choice and the power set operation. Zermelo sought 

to avoid the set-theoretic paradoxes and demonstrate the 
legitimacy of the axiom of choice by carefully proscribing the 
rules which were allowed in the formulation of sets. Russell 
sought to avoid the set-theoretic paradoxes by reducing mathematics 
to logic and then restricting the logical principles used in the 
construction of sets. There were many other attempted solutions,

95 B. Russell, "Mathematical Logic . . .," as quoted in 
Robert C. Marsh, ed., Logic and Knowledge. 1956, p. 75.
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too numerous to discuss here. A more typical response by a
96practicing mathematician was that of Hausdorff, who simply

prohibited as self-contradictory any set containing all the
ordinals or all the cardinals.

Unfortunately, all of these approaches were doomed to failure:
some because they were only fregmentary solutions with no apparent
extension to a complete solution; some because they merely replaced
the problems of abstraction and infinity with other problems.

The French intuitionists' and Hausdorff's solutions were of
the fragmentary variety. Although Borel could explain his
objections to the use of the axiom of choice and did suggest that

97a constructivist approach be adopted, he admitted that the
actual working out of a constructivist approach was a difficult

98problem— one he never attempted. In fact, as Hadamard and 
99later Peano pointed out, Borel was inconsistent, using the very 

techniques in his own research to which he objected in Zermelo's 
proof of the well-ordering principle.

96 See F. Hausdorff, "GrundzUge einer Theorie der geordneten 
Mengen,” Mathematische Annalen, 65 (1908), pp. 435-505.

97 See the quotation associated with footnote 86.
Q Q See Baire, Borel, Hadamard, and Lebesque, 0£. cit.
99 See G. Peano, Formulaire de mathematiques, Turin (1895- 

1901), 3 vol.; also G. Peano, "Additione," Revistade mathematics 
8 (1906), pp. 136-143.

R eprod u ced  w ith perm ission o f the copyright owner. F u rth e r reproduction prohibited w ithout perm ission



www.manaraa.com

70

Similarly, although Hausdorff avoided the operations which 
led directly to the set-theoretic paradoxes, his solution was 

suspect in several ways. First, his procedure was ad hoc.
There was no reason to exclude these particular operations except 
that experience had shown they led to difficulties. Second, 
there was no way of telling how much such a prohibition would hurt 
research in set-theory. Just how much mathematics was Hausdorff 
eliminating by prohibiting perhaps harmless uses of all ordinals 
or all cardinals? Third, and most important, there was no reason 
to believe Hausdorff had eliminated all of the set-theoretic 
difficulties simply by banishing sets including all the ordinals 
or all the cardinals.

Although Zermelo's axiomatization ultimately led to an 
axiomatization that is accepted today, it was not until the end 
of the 1920's that all of the technical details of the axiomati- 
zation were worked out by Skolem and Fraenkel. Beside this, there 

remained the problem of objections to the axiom of choice, which 
was included in Zermelo's axioms for set theory. While Zermelo 
thought that the new version of the choice axiom which tie 
introduced was of a "purely objective character [which] is 
immediately evident. his critics were not convinced. The

b.

100 E. Zermelo, "Neuer Beweis . . quoted as translated 
in G. Moore, op. cit., p. 320.
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fact that there is still concern today over the highly abstract 
objects capable of definition in Zermelo-Fraenkel set theory 

indicates that the axiomatic approach has not answered entirely 
the problems of the new mathematics.

There were a number of problems with Russell's logicist 
program as well. First, the original version of the theory of 
types was attacked as arbitrary. Russell replied that, based on 
their naure, the theory of types was the only way to avoid the 
paradoxes. Second, despite the theory of types, Russell's 
critics were able to show that the paradoxes could still be 
formulated. Russell responded with his ramified theory of types, 
but the critics were not satisfied with the technical manipulations 
of the theory and answered that his solution was ad hoc. Third, 
the Axiom of Reducibility which Russell had added to insure that 

all of classical analysis could be formulated within the logicist 
program was even more objectionable to the critics. The Axiom of 
Reducibility stated, in effect, that for any proposition of 
type n, with n>l , there was an equivalent proposition of type 
one. There was no reason for adopting this particular axiom 
other than that it was what was needed to save the mathematics.
The axiom was labelled incorrect, ad hoc, and extralogical.
Fourth, two other axioms of Russell's system, the multiplicative 
axiom and the axiom of infinity, were also criticized as being 
extralogical. The multiplicativa axiom is equivalent to the
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axiom of choice, which has been discussed above. The axiom of 
infinity asserts the existence of an infinite number of distinct 
objects, which was criticized as a material rather than logical 
assertaion. An extralogical axiom, of course, would wreck the 
reduction of mathematics to logic. Fifth, in fact, without 
criticizing any axiom in particular, there were many objections 
in general, both mathematical and philosophical, to the 
possibility of carrying out this reductionist program. Finally, 
logicism was criticized for never working out all the details of 
the program— even after the three-volume Principia Mathematics 
was completed.

Unfortunately, there were also difficulties with Brouwer's 
proposed solution to the problems of the new mathematics. The 
difficulties did not involve the intuitionist's solution to the 
problems with infinity and abstraction. It is clear that the 
set-theoretic paradoxes could not be formulated in intuition- 
istic mathematics. It is also clear that intuitionism resolved 
any problem with abstract objects, either by giving them meaning 
through a construction or by banishing them altogether from 
mathematics. Rather, the difficulty lay in the poverty of 
intuitionistic mathematics research programs, due to the restrict
iveness of the constructivist method. This poverty of intuition
istic versus classical mathematics was shown in four ways:

(1) Sometimes the intuiZionists obtained the same results as
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the classical mathematicians but had to resort to different 
(and often more difficult) arguments. This was the case, for 

example, in proving the existence of the transcendental numbers. 
Cantor provided the only straight-forward proof by using a 
diagonal argument to show that more real than algebraic numbers 
existed. This proof was not admissible to the intuitionists. 
However, a long and tedious argument can be given to prove the 
theorem in a way acceptable to the intuitionists if one is 
careful about orderings.

(2) Sometimes the intuitionists could only give a result 

similar to the classical result. For example, the intermediate 
value theorem of classical mathematics states that, for any func
tion f continuous on the closed interval from a to b such 
that f(a)<0 and f(b)>0 , there is a number n such that 
f(n)=0 and a<n<b. The strongest intuitionist version of this 
theorem has the same hypotheses, but concluded that for any 
positive integer m there is a c , with a<c<b , such that

- ~< f (c ) ■  . m m
(3) Sometimes there was more than one intuitionist analogue 

of a classical result. Such is the case with the theory of

101 Neither is there a direct intuitionistic analogue of
F. Lindemann’s proof (Mathematische Annalen 20 (1882), pp. 213- 
25), which is based on the structure rather than the cardinalities 
of the real and algebraic numbers.
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infinite series. Brouwer claimed that the notion of convergence
should be split into a "positive" and "negative" theory of

102convergence. Belinfante showed that the "positive" and 
"negative" approaches lead to quite different theories, with only 
the "positive" theory resembling the classical theory.

(4) Sometimes there was no intuitionist analogue Co a 
classical theorem, or worse, there was an intuitionistic result 
which was the negation of the classical result. This is 
especially true in analysis, at the heart of classical mathematics. 

The Bolzano-Weierstrass theorem, the convergence of a bounded, 
monotone sequence of real numbers, the theory of Dedekind cuts, 
the existence of a least upper bound for a bounded set of real 
numbers, and the existence of a maximum for a continuous real 
function in a closed interval are all either false or mean
ingless under intuitionist mathematics.

It is no wonder that most practicing mathematicians were 
vehemently opposed to Brouwer's intuitionism. In fact, many 
mathematical practitioners were not concerned about the problems

•̂02 gee h . Belinfante, "Zur intuitionistishen Theorie der 
unerjdlichen Reihen," Sitz♦ Berlin, 1929, No. XXIX; "tJber eine 
besondere Klasse von non-oszillierenden Reihen," Proc. Amsterdam 
Soc. 33 (1930), pp. 1170-1179; "Das Riemannsche Uinordnumgsprinzip 
in der intuitionistischen Theorie der unendlichen Reihe,"
Composito Math., 6 (1938), pp. 118-3 23.
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of abstraction and infinity because these problems never surfaced

in their research areas. But what about those researchers who

studied logic, set theory, topology, measure and integration
theory, or functional analysis? How were they to reconcile the
power of the new methods of abstract and infinity which were so
crucial in their research with the difficulties that these
methods introduced? Hilbert, in particular, was worried by this
problem. He was sensitive to the problems of the new mathematics.
He was enamored with the constructivist solution proposed by
Brouwer. But he would not relinquish mathematical results for
the sake of constructivity as Brouwer had been willing to do.
Hilbert phrased his portion in two well-known aphorisms:

No one shall expel us from the paradise 
which Cantor created for u s . 103

Forbidding a mathematician to make use of the principle 
of excluded middle [as Brouwer dees] is like forbidding 
an astronomer his telescope or a boxer the use of 
his fists.104

The next chapter will show how Hilbert attempted to resolve 
this dilemma with his formalistic program.

D. Hilbert, "Uber das unendliche," Mathematische 
Annalen, 95 (1926), p. 170.

1 0 4 See H. Weyl, Bulletin American Mathematical society, 
5 0  ( 1 9 4 4 ) ,  p .  6 3 7 .
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Chapter II: From Hilbert’s Program

to Recursive Function Theory

Like Brouwer, David Hilbert was seriously concerned about the 

problems abstraction and infinity had caused for the foundations 

of mathematics. He believed that the discovery of a secure 

foundation was among the most important tasks awaiting the 

mathematician. However, unlike Brouwer, Hilbert was determined to 

provide a foundation for all of mathematics— not just that fragment 

where security was easily won. Although Hilbert severely 

criticized Brouwer’s intuitionism for excluding results from 

mathematics Lecause they were problematic, he was enamored never

theless with the constructivist approach. His solution for the 

foundational crisis,commonly known as formalism, was an ingenious 

merger of constructivism with his previously well-developed 

interest, axiomatics.

This chapter will describe Hilbert's formalist program to

solve the foundational crisis and GiJdel's incompleteness theorem,

which spelled the total collapse of this program. It will be

shown that at the root of both Hilbert's and GHdel's work was the

use of recursive functions, which are the formal, mathematical

analog of those functions one intuitively knows how ^o compute.

The roots o£ recursive function cheory are traced, ending with
76
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the precise, mathematical characterization by Alan Turing and Emil 

Post of the recursive functions as those functions which can be 

computed by an idealized machine. The chapter concludes with a 

description of the first plans for the use of this mathematical 

theory in the construction of physical computing machinery.

Hilbert's Program

Like Brouwer, Hilbert adopted a highly philosophical approach 

to the foundational crisis. His philosophy of mathematics 

explicitly acknowledged Kant as a forerunner. The lineage was not 

as direct as from Kant to Brouwer, however, because Brouwer was 

willing to relinquish most of analysis for his philosophical 

position, whereas Hilbert's overriding concern was with preserving 

all of classical mathematics. Thus, while Hilbert wanted to 

believe, with Kant, that mathematical knowledge depended 

ultimately on a priori intuitive insight, he also wanted to accept 

certain portions of classical mathematics which apparently could 

not be constructed from such intuition. It was through his 

attempt to reconcile these apparently contradictory positions that 
he arrived at his philosophy of mathematics, which conflated a 

purely formalist approach to mathematics with a purely intuition

ist approach to metamathematics.

Hilbert was thoroughly acquainted with, and had at least
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moderate sympathy for, Kant's philosophy of mathematics. For

instance, in fulfillment of his final doctoral requirement,

Hilbert defended the proposition "that the objections to Kant's

theory of the si priori nature of arithmetical judgements are

unfounded." This was at a time when Kant's views of mathematics

were in general disrepute owing to the discovery of non-Euclidean

geometries. Although these discoveries discredited Kant's views

of the nature of geometrical axioms, Hilbert chose to open his

Foundations of Geometry with an epigraph from Kant:

All human knowledge begins with intuitions, then passes 
to concepts, and ends with ideas.^

A1though qualifying his agreemant, Hilbert explicitly acknowledged

his indebtedness to Kant:

I admit that even for the construction of special 
theoretical subjects certain a priori insights are 
necessary. . . .  I even believe that mathematical 
knowledge depends ultimately on some kind of such 
intuitive insight. . . . Thus the most basic thought 
of Kant's theory of knowledge retains its importance.
. . . The â priori is nothing more or less than . . . 
the expression for certain indispensable preliminary 
conditions of thinking and experiencing. But the 
line between that which we possess a_ priori and that 
for which experience is necessary must be drawn dif
ferently by us than by Kant— Kant has greatly over
estimated the role and the extent of the a priori.^

^ Quoted from Constance Reid, Hilbert, p. 62.
2 From a Fall, 1930 Kdnigsberg address to the Society of 

German Scientists and Physicians, as quoted in Ibid., p. 194.
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The motivation for Hilbert's philosophy of mathematics,

however, was not a direct reaction to Kant. Instead, it was

a direct reaction to arguments by Brouwer and Weyl, reminiscent

to Hilbert of earlier arguments he had heard from Kronecker.

These arguments concerned imposing limitations on mathematics in

order to provide it with a constructive character. Kronecker

was among the most powerful mathematicians in Germany during

Hilbert's early career, and Hilbert was attracted to Kronecker,

basing a number of early papers on his methods and problems.

Hilbert disagreed, however, with Kronecker's beliefs that the

only mathematical objects which exist are those which can be

constructed from a finite number of positive integers, and that

existence proofs are meaningless unless they actually specify

the object asserted to exist. Hilbert deplored the imposition of

what he saw as Kronecker's restrictive personal prejudices, and
3retorted concerning existence proofs:

The value of pure existence proofs consists precisely 
in that the individual construction is eliminated by 
them, and that many different constructions are sub
sumed under one fundamental idea so that only what is 
essential to the proof stands out clearly; brevity and 
economy of thought are the reason d 'etre of existence 
proofs. . . .  To prohibit existence statements . . . 
is tantamount to relinquishing the science of mathe
matics altogether.

3 Ibid., p. 37.
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Hilbert saw this same restrictive attitude reappear in Brouwer and

his student, Weyl. Once again mathematics of the continuum was

being severely limited by the mandate that a mathematical object

must be actually constructed to exist. Hilbert angrily responded:

What Weyl and Brouwer do comes to the same thing as to
follow in the footsteps of Kronecker! They seek to save
mathematics by throwing overboard all that which is
troublesome. . . . They would chop up and mangle 
the science. If we would follow such a reform as the 
one they suggest, we would run the risk of losing a 
great part of our most valuable treasure

Hilbert was faced with countering Brouwer. But how was he to

formulate a philosophy of mathematics which preserved both the

constructive character and the classical results, which often

took the Flatonist attitude that objects exist without our

providing a construction of their existence?

Hilberts' philosophy of mathematics was based upon a 

distinction between mathematics and metamathematics. Mathematics 

studies mathematical objects, such as sets and numbers,and their 

properties. Metamathematics studies the methods of reasoning used 

in mathematics and the objects, such as proofs, used to carry out 

this reasoning. According to his scheme, mathematics was to be 
carried out in a purely formalistic manner, while metamathematics 

was to be carried out in an intuitive or, as Hilbert called it,

4
At a 1922 meeting in Hamburg, as quoted i;. Reid, p. 155.
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"finitary" manner. The idea was to formalize each statement and 

proof of classical mathematics in an exact, symbolic language and 

to take this collection of formalized statements and proofs as the 

object of mathematical study. The motivation for this approach 

stems from Hilbert's concept of meaningfulness.

Mathematics, Hilbert thought, consisted of statements about

symbols— strokes (numerical symbols) in particular— which have no

significance in themselves.

. . . each numerical symbol is intuitively recognizable 
by the fact it contains only l's. These numerical 
symbols which are themselves our subject matter have no 
significance in themselves. But we require in 
addition to these symbols, even in elementary number 
theory, other symbols which have meaning and which 
serve to facilitate communication, for example the 
symbol 2 is used as an abbreviation for the numerical 
symbol 11, and the numerical symbol 3 as an abbreviation 
for the numerical symbol 111. Moreover, we use symbols 
like +, =, and * to communicate statements. 2+3=3+2 is 
intended to communicate the fact that 2+3 and 3+2, when 
abbreviations are taken into account, are the self-sameCnumerical expression, viz., the numerical symbol.J 

Only particular statements about particular symbols are admitted 

as meaningful. Any true, and thereby meaningful, statement must 

be intuitive (anschaulich), i.e., finitely cognitively graspable. 

This provides a means for classifying mathematical statements 
according to meaning. Particular arithmetical formulas, e.g.

Hilbert, 'On the Infinite," as reprinted in Benacerraf 
and Putnam, Readings in the Philosophy of Mathematics, p. 143.
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2+3=*3+2, are meaningful. The statement "there are no prime numbers 

between 100 and 200" is meaningful, for it can be written as a 

finite disjunction with disjuncts of the form "a can be further 

factored", where a is a number between 100 and 200. Some 

statements are partially meaningful.^ For example, the statement 

"there is no prime number greater than 100" is partially 

meaningful. It has no meaning by itself, for it presupposes 

grasping an infinite disjunction. However, the statement can form 

part of a meaningful statement, e.g., if "and less than 200" is 

added to it. Finally, there are meaningless statements.^ For 

example, the statement "there are an infinite number of twin 

primes" is meaningless, for there is no finite way to cognitively 

grasp it.

Thus, individual statements of mathematics are either

This is an interpretation of an argument of Hilbert as 
reprinted in Benacerraf and Putnam, pp. 143-144.

 ̂There are other sorts of examples which are, somewhat 
oddly, thought of as meaningless. General statements (containing 
unbounded quantifiers), e.g., for all a and b , a+b=b+a, are 
meaningless. This attitude reflects Hilbert's concern with 
mathematics as content (for here there is a different content for 
each of an infinite number of choices for a and b ), and not 
with form (for there is only one form). However, once instan
tiation occurs throughout the general statement, it becomes 
meaningful. Also, negations of certain meaningful statements are 
not meaningful. See Benacerraf and Putnam, p. 144, where Hilbert 
says that 1+a^a+l is meaningless for a particular numerical 
symbol a .
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meaningful or meaningless. What distinguishes them is that the 

meaningful ones are inhaltlich (material, of content). Instead of 

restricting mathematics to inhaltliche statements (similar to the 

ploy of Brouwer), Hilbert relinquished entirely the concept of 

meaning. The meaningless statements were added, as ideal
g

statements, to the inhaltliche statements in order to form the 

realm of mathematics. Once the ideal statements were added, 

however, the problem emerged. How is the truth value of an ideal 

statement to be determined? How is the truth value of an 

inhaltliche statement whose proof relies on ideal statements to be 

determined?

Hilbert's solution was to return to his prior experience 

with axiomatics and choose an exact, symbolic (formal) language 

which was powerful enough to express the statements and proofs of 

classical mathematics, but which still had precise rules for 

determining the meaningful statements. Hilbert then identified 

mathematics with the set of provable formulas within a formal, 

axiomatic system, thereby reducing the truth of classical

g
The addition of ideal elements was a common method of 

mathematics during the period. Ideal elements, e. g., points at 
infinity, or ideals in algebra, were added to make the work 
simpler and more complete. They obeyed the same rules but were 
distinguished from the "real elements." Hilbert had used ideal 
elements previously in a paper on invariant theory.
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mathematical statements to the provability of their representative 

formulas within the formal system.

Hilbert required, however, that the formal system represent

classical mathematics, i.e., it must meet the criterion that a

formula representing a meaningful theorem is to be provable in

the formal system just in case the theorem is true in classical 
9mathematics. In fact, since Hilbert was so restrictive in what 

statements of classical mathematics he considered meaningful, 

that is, since all meaningful statements could be reduced to finite 

disjunctions of inhaltliche statements, it followed that there 

was no difficulty in proving the formal analogs of all true 

meaningful statements. The question arose as to whether the formal 

system was too powerful, whether the formal analogs of false, 

but meaningful, statements of classical mathematics could also 

be proved in the formal system. This meant that all Hilbert 

had to do was to show that the formal system was consistent,

i.e., did not contain any provable contradictions. Since the 

formal analogues of true meaningful statements were provable, if 

the system were consistent, then the formal analogues of the 

false meaningful statements could not be provable.

9 He also required that the negation of the formula be 
provable if the theorem is false. Hilbert, in fact, chose the 
system of Principia Mathematica for his formal system.
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If he could just prove the consistency of the formal system, 

he could save all of classical mathematics to the extent that it 

would never lead to a contradiction and, in particular, never 

contradict an inhaltliche statement.^

If contradictory attributes be assigned to a concept,
I say that mathematically the concept does not exist.
. . .  In the case before us, where we are concerned with
the axioms of the real numbers in arithmetic, the proof 
of the consistency of the axioms is at the same time the
proof of the mathematical existence of the complete
system of real numbers or of the continuum. Indeed, when 
the proof for the consistency of the axioms shall be 
fully accomplished, the doubts which have been expressed 
occasionally as to the existence of the complete ^
system of real numbers will become totally groundless.

But how is the consistency of the formal system to be 

established? Hilbert could not use provability in another formal 

system to prove the consistency of the first, for this would 

only lead to a regress ad infinitum. The consistency proof had 

to be carried out using statements and methods which were meaning

ful or, as Hilbert termed them, "finitary." "Finitary" was

The argument that the formal system should actually be 
identified with mathematics was that, once the system was shown 
to be consistent, it would resemble mathematics in not leading to 
any contradiction or contradict any of the (evident) elementary 
statements of mathematics and could be further tested by how 
well it solved problems for which it was not specifically 
designed, e.g., the continuum hypothesis. In any case, the 
meaningless part of mathematics was saved only to the extent that 
it was shown that 0=1 could never be proved from it.

Quoted in Reid, p. 71.
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defined as meaning that:

. . . the discussion, assertion or definition in 
question is kept within the boundaries of thorough
going producibility of objects and thorough-going 
practicality of methods and may accordingly be carried 
out within the domain of concrete inspection.^

Statements about formal proofs, which are concrete statements 

about concrete objects, could be checked in a finite number of 

steps, and were hence finitary. This finitary reasoning, unlike 

the axiomatic approach of mathematics, was based upon intuition. 

The formal system was considered as a formal model of the way we 

do mathematics. Which rules of deduction were admissable was 

to be decided by one's intuitions as to which were logically 

valid. Consistency was to be determined by how the formal 

operations adhere to the admissable operations of thought.

For this formula game is carried out according to 
certain definite rules, in which the technique of our 
thinking is expressed. These rules form a closed 
system that can be discovered and definitively stated. 
The fundamental idea of my proof theory [metamathe
matics] is none other than to describe the activity of 
our understanding, to make a protocol of the rules ^  
according to which our thinking actually proceeds. . .

Thus while the mathematics was purely formal, the metamathematics

was purely intuitive. In fact, Hilbert turned to the

Ibid., p. 156. 

^  Ibid., p. 186.
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constructivist approach of Brouwer and Kant to make his meta

mathematics meaningful and intuitive. Weyl summarizes Hilbert's 
14position:

It must have been hard on Hilbert, the axiomatist, 
to acknowledge that the insight of consistency is 
rather to be attained by intuitive reasoning which is 
based on evidence and not on axioms. But after all, it 
is not surprising that ultimately the mind's seeing 
eye'must come in. Already in communicating the rules of 
the game we must count on understanding. The game is 
played in silence, but the rules must be told and any 
reasoning about its consistency, communicated by words. 
Incidentally, in describing the indispensable intuitive 
basis for his Beweistheorie Hilbert shows himself an 
accomplished master of that, alas, so ambiguous medium 
of communication, language. With regard to what he 
accepts as evident in this "metamathematical" reasoning, 
Hilbert is more papal than the pope, more exacting than 
either Kronecker or Brouwer. But it cannot be helped 
that our reasoning in following a hypothetic sequence of 
formulas leading up to the formula 0+0 is carried on in 
hypothetic generality and uses chat type of evidence 
which a formalist would be tempted to brand as 
application of the principle of complete induction. 
Elementary arithmetics can be founded on such intuitive 
reasonings as Hilbert himself describes, but we need 
the formal apparatus of variables and "quantifiers" 
to invest the infinite with the all important part that 
it plays in higher mathematics. Hence Hilbert prefers 
to make a clear cut: he becomes strict formalist in
mathematics, strict intuitionist in metamathematics.

Hilbert realized that he had several difficulties to overcome 

in carrying out his program. First, he had to show that he could 

find an axiomatic system powerful enough to prove all of 
classical mathematics. This meant establishing a set of axioms

^  Ibid., p p .  269-270.
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and then manipulating them to demonstrate that the results of 

these axioms corresponded with the classical results of mathema

tics. Unfortunately, the body of classical results was logically 

intractable, since it did not correspond to any complete logical 

theory (in the technical, logical sense of completeness). There

fore the project of demonstrating that any axiomatic system 

corresponded with the theory of classical mathematics was purely 

empirical. One attempted to show that a particular axiomatic 

system adequately dealt with all the fundamentals of classical 

mathematics and with any portion of classical mathematics that 

appeared â priori difficult to axiomatize.

However, Hilbert had to contend with a second and even more 

serious problem: the consistency of the system. An inconsistent

set of axioms would imply all the theorems of classical mathe

matics; but it would imply all of their negations as well: Hilbert

knew from his previous work on the foundations of geometry that, 

to prove the consistency of an axiomatic system, one had to go 

outside the system and discuss the developments in a metasystem.

But how was one to be certain of the proof in the metasystem?

As discussed above, Hilbert sought a constructivist metasystem 

which was intuitively consistent. However, the possibility of 

finding a metasystem which was constructive enough to be intui

tively acceptable, but powerful enough to prove the consistency 

of a formal system for all of mathematics, was far from clear.
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Thus Hilbert was left with the following technical tasks in 

order to carry out his formalist program. The list here is

compiled by John von Neumann, one of those working on the pro-
• . 15 ject.

1. To enumerate all the symbols used in mathematics and 
logic. Those symbols, called "primitive symbols," 
include the symbols and (which stand for 
"negation" and "implication" respectively).
2. To characterize unambiguously all the conbinations 
of these symbols which represent statements classified 
as "meaningful" in classical mathematics. These 
combinations are called "formulas." (Note that we 
said only "meaningful," not necessarily "true." '1+1*2 ' 
is meaningful but so is '1+ 1*1 ,' independently of the 
fact that one is true and the other false. On the other 
hand, combinations like ' 1+^*1 ' and '++1=-*-' are 
meaningless.)
3. To supply a construction procedure which enables us 
to construct successively all the formulas which 
correspond to the "provable" statements of classical 
mathematics. This procedure, accordingly, is called 
"proving."
4. To show (in a finite combinatorial way) that those 
formulas which correspond to statements of classical 
mathematics which can be checked by finitary arith
metical methods can be proved (i.e. constructed) by the 
process described in (3) if and only if the check of 
the corresponding statement shows it to be true.

Hilbert found that it was too large a project to carry out by 

himself, so he delegated work to his graduate students and other 
colleagues. Throughout the 1920's and 1930's there were many

John von Neumann, "Die formalistische Grundlegung der 
Mathecatik," Erkenntnis 2 (1931), as translated in F. Benacerraf 
and H. Putnam, pp. 50-54.
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partial results suggesting that the program would soon be

successfully completed. Principia Mathematics, published by

Russell and Whitehead in three volumes between 1910 and 1913,

accomplished the first three tasks to the satisfaction of most

mathematicians. The difficult part of the program to establish

was point four, a constructive proof of the consistency of the

formal system. While fragments of the system were shown to be 
16consistent, no one was able to show the entire system consistent. 

There was tremendous optinism, however, and everyone believed it 

was simply a matter of time before the consistency of the system 

was demonstrated and mathematics was given a secure foundation once 

and for all.

Godei’s Incompleteuioa Theorem

The mathematics community was stunned in 1930 by Kurt Gbdel's 

incompleteness theorems for first order logical systems. The first 

incompleteness theorem stated that, for any formal system S 

which is powerful enough to express elementary number theory, if 

S is consistent, then there is a formula F in S such that 

neither F nor its negation is provable in S . The effect of

16
For example, such work by Skolem and Herbrand is discussed later m  this chapter.
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GBdel's incompleteness theorem was to show that there was no 

consistent formal system which had all the truths of arithmetic as 

provable theorems. This ended any possibility of successfully 

completing Hilbert's program. First of all, the condition 

governing GBdel's theorem that the system S be powerful enough 

to express all of elementary number theory did not provide a loop

hole for Hilbert's program, because any system in which one could 

deduce all the theorems of mathematics would have to allow 

expression of elementary number theory.

A second, and more germane, point is related to GBdel's 

second incompleteness theorem. This theorem states that if S is 

consistent, then the formula in S which states that S is 

consistent is unprovable in S ! The important point here is that 

the proof of the second incompleteness theorem is finitary in 
Hilbert's sense. Thus, using the stringent intuitive methods 

Hilbert required for metamathematics, GBdel showed that the 

consistency of such a formal system as Hilbert needed to express 

all of mathematics could be demonstrated to be unprovable! This 

was the final blow to Hilbert's program. ^

For a discussion of attempts to continue Hilbert's program 
even after GBdel's incompleteness theorems, see Charles Parsons, 
"Mathematics, Foundations of," in Encyclopedia of Philosophy,
Vol. V, pp. 188-213.
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The method GBdel used in proving his incompleteness theorems 

is of great importance here. How was GBdel able to use the 

intuitive metamathematical methods that Hilbert required and yet 

prove so powerful a theorem? GBdel developed the concept of 

recursiveness, the precise formal equivalent of the construc- 

tivity Hilbert required of metamathematics. GBdel then showed 

that all the formulas involved in discussing the consistency of a 

formal system were recursive. While others had worked with the 

recursive functions before (as will be discussed below), no one 

before GBdel had given a precise definition of the recursive 

functions and no one had shown so many functions to be recursive. 

Moreover, the importance and stunning character of GBdel's 

result attracted many mathematician? to study in detail the 

techniques GBdel used in his proofs.
18Technically, here is what GBdel did in his paper proving 

the incompleteness theorems. He began by developing what today is 

called GBdel numbering or coding. Natural numbers were assigned 

to sequences of signs and to sequences of sequences in his formal 

system P (the system that had been developed by Russell and 

Whitehead for Principia Mathematica together with Peano's axioms

18 Kurt GBdel, "Uber formal unentscheidbare SHtze der 
Principia Mathematica und verwandter Systeme I," Monatshefte ftlr 
Mathematik und Physik, Vol. 38 (1931), pp. 173-198.
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for arithmetic). These assignments were one-one and effective,

i.e., given a number, it could be decided effectively whether that

number corresponded to a sequence and, if it did, the sequence

could actually be written down; and conversely, given a sequence,
19the number corresponding to it could be effectively calculated. 

Coding was developed to reduce metamathematical problems to 

number-theoretic ones. In that way, description of the formal 

system could be reduced, to some extent, to representative 

statements within the formal language. This technique of coding 

non-numerical symbols into the integers is the crucial method for 

the discussion of formal systems and enters into all later 

decidability results. The method is also important for extending 

recursive definition to non-numerical objects.

GHdel then provided the first precise definition of the 

constructable functions. He called them "recursive functions." 

However, his initial definition was too restrictive and only 

included a subclass of what we now call the recursive functions. 

The class he defined is now called the "primitive recursive" 

functions. In his definition he made use of the notion of

This coding was based on the unique decomposition of 
numbers into prime factors.
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relative recursiveness, which had first been suggested by 

Hilbert:20

A number-theoretic function <Hxi,... ,3̂ ) is said to be 
recursively defined in terms of [relatively recursively 
defined by] the number-theoretic functions <Kx]_,...,
Xn.i) and y (xi,... .Xn+i) if <j>(0,X2 xn) ■
K x 2 xn) » ♦(W-l, X2,...,xn) = y(k,4'(x2,. ..,xn),
X2 ,...,xa) hold for all X2 ,...,xn ,k .
A number-theoretic function $ is recursive if there is 
a finite sequence of number-theoretic functions 
<f>l» • • • »<l>n that ends with and has the property that 
every function of the sequence is recursively
defined in terms of two of the preceding functions by 
substitution, or finally, is a constant or the 
successor function xtl .

A relation R(x^,...,xn) between natural numbers is 
said to be recursive if there is a recursive function 
<j>(x̂ ,... jXjj) such that, for all x]_,...,xn ,
R(xi,... ,xn) if and only if <f»(xi>... ,xn)=0 .

From this definition Gttdel proved the following theorems about how
21to form (primitive) recursive functions and relations:

I. Every function (relation) obtained from recursive 
functions (relations) by substitution of recursive 
functions for the variables is recursive; so is every 
function obtained from recursive functions by recursive 
definitions according to schema (*).
II. If R and S are recursive relations, so are ”iR
and RvS (hence also R&S ).
III. If the functions <f>(x) and i|»(y) are recursive,
so is the relation <|>(x) * >J>(y) •

20 Quoted in van Heijenoort, p. 602.
21 Ibid., p. 602.

R eprod u ced  with perm ission of the copyright ow ner. F urther reproduction prohibited w ithout perm ission.



www.manaraa.com

95

IV. If the function <f>(x) and the relation R(x,y) are 
recursive, so are the relations S and T defined by 

S(x,y) iff (Ex) [x*<Kx)&R(x,y)] and 
T(x,y) iff (x) [xi<j>(x)-̂ R(x,y)] 

as well as the function i|) defined by 
ip(x,y) =* ex[xf<p(x)&R(x,y)] , 

where exF(x) means the least number x for which
F(x) holds and 0 in the case there is no such number.

GBdel used the four theorems and the fact that xfy , x*y ,

x? , x<y , and x*y are (primitive) recursive, with the recursion

schema, to show that forty-five number-theoretic predicates are

(primitive)recursive. Most of these predicates, such as Ax(x),

which is by definition true just in case x is the code number of

an axiom, were associated with metamathematical notions to be used

in describing formal systems. By induction, with the application

of forty-five predicates, all primitive recursive number-

theoretic predicates were shown to be numeralwise representable in
22the formal system P , i.e., a number-theoretic predicate holds 

of some given numbers just in case there exists a formula of P 

which is provable whenever the symbols in P representing the 

numbers are substituted for the free variables, those variables 

not restricted by a quantifier. This machinery was sufficient

22 The formal system P was obtained essentially by super
posing the logic of Principia Mathematics upon the. Peano axioms, 
allowing constant symbols for the integers, and the successor 
relation as a primitive notion. Actually, any of a certain broad 
class of formal systems would have sufficed.
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to prove the theorem, and Gttdel showed that in any formal system

P^ , where P^ was the system P together with any ui-consistent
23(primitive) recursive class k of additional axioms, there is a 

proposition such that neither it nor its negation is provable 

in rk .

GBdel made several remarks concerning the incompleteness 

proof which are relevant to the theory of recursive functions.

He first noted that the proof of the incompleteness of P^ is 

constructive. Although only a few of the researchers were direct 

followers of Brouwer or Hilbert, there was a genuine concern for 

constructive procedures. In some sen3e, the recursive functions 

were supposed to be a formalization of the constructible functions. 

Throughout the incipient period of recursive function theory, there 

was a manifest concern with constructible definitions, proofs, 

and operations. Hilbert was especially interested in recursion, 

for ha believed that it was a finite, constructible way of 

generating a broad class of the functions necessary for the 

development of mathematics. The early work on recursive functions 

is discussed in the next section of this chapter.

Gttdel's second remark is even more important. He defined

23 lhe notation "Pic" comes into use only later. Gttdel 
gives the first definition of ^-consistency. A formal system is 
uj-consistent if there is no formula A(x) for which you can prove 
both iVxA(x) , "not for all x , A(x)", and each proposition 
A(0),A(1), A(2),....
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a relation R(x^,...,xq) between natural numbers to be decidable

if there is an n-place relation symbol r such that R(x ^,...,xq)

implies r(x.,...,x ) is provable in P, , and not-R(x..,... ,x )—x -"ti tc x n

implies ir(x,......x ) is provable in P. , where x.,...,x—i —n k —1 —n
are symbols in P^ for the variables or constants x^,...,xq in

classical mathematics, repsectively. He then asserted that it

suffices for the existence of undecidable propositions in P^

that the class k be ui-consistent and decidable. In a note of 
241934, Gttdel observed that the decidable predicates are just

25those which are general recursive. This constituted the first 

definition of the general recursive functions. A more precise 

definition was given by Gttdel in his 1934 Princeton lectures, 

which are discussed below.

The following section of Gttdel*s 1931 paper provided 

* additional incompleteness results relevant to recursive function 

theory. Gttdel first established that primitive recursive number- 

theoretic predicates are arithmetic, i.e., can be expressed as a

24 "On the Length of Proofs," 1934, translated in Davis, The 
Undecidable, pp. 82-83.

25 The general recursive functions are those which correspond 
in some formal way to the effectively computable functions. Thera 
are several alternative characterizations of the general 
recursive functions— all of them equivalent. For more detail, 
see the next three sections of this chapter on the 1936 papers 
by Church, Kleene, Post and Turing.
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26formula of first-order number theory. In fact, he showed that if 

F(x) is primitive recursive, then it is provable in that

(x)F(x) , "for all x, F(x)," is equivalent to an arithmetic 

formula. Since the previously demonstrated undecidable formula of 

was of the form (x)F(x) with F(x) primitive recursive,

P^ contains undecidable arithmetic propositions. Thus, GBdel 

had shown that in P^ there are undecidable number-theoretic 

predicates.

The Early Development of Recursive Functions

GBdel was not the first to be concerned with recursive 

functions. The idea of building up mathematical objects in a 

series of stages goes back to the Greeks. Almost every branch of 

mathematics in the nineteenth century used some algorithms or 

iterative procedures. However, there are differences between

(i) using recursive functions in some particular context,

(ii) basing a theory on exclusive use of recursive functions, and

(iii) studying the properties of recursive functions themselves.

Use (i) of recursive functions was commonplace in nineteenth

XT*

26 As von Heijenoort points out, p. 594, this is stronger 
than showing that the number—theoretic predicates are numeralwise— 
representable.
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century mathematics. However, it was not until the twentieth

century and the concern over the foundations of mathematics that

the second use of recursive functions developed. The third use

was developed in the 1930's, partially as the result of GBdel's

incompleteness theorems. No more need be said here about the

first use of recursive functions, but the other two uses are

relevant to the discussion and are considered in detail.

Even before GBdel's incompleteness results, the primitive 
27recursive functions had been used in foundational research. In

281919 Skolem wrote a paper developing arithmetic in a new way 

in an attempt to avoid the difficulties of the paradoxes without 

adopting the cumbersome complexities of the theory of types. This 
arithmetic, now known as primitive recursive arithmetic, eschewed 

unbounded quantifiers and allowed bounded quantifiers as abbrevi

ations only. Thus, he would not allow such propositions as

27 The class of primitive recursive functions is the 
smallest class £ of functions such that:

(1 ) all constant functions are in £;
(2) The successor function f(x)=x+l is in £;
(3) All identity functions f(x. ,...,xn)=x^ are in
(4) If f,g ,...,gK are in £, then so is f(g.(x. ,...,x ),

and (5) If h, g are in 5, then so is f defined by
f (0 ,X2 ,... ,xk)=»g(x2 , • • •,%) and 
f(y+l,x2 ,..•,xk)=h(y,f(y,X2 ,•...x^), X2 ,.••,Xk).

28 "The Foundations of Elementary Arithmetic Established by 
Means of the Recursive Mode of Thought Without the Use of 
Apparent Variables Ranging Over Infinite Domains," 1S23.
Reprinted in van Heijenoort, pp. 302-333.
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"for all s, B(x)," and such propositions as "for all x less than 

k, B(x)" were allowed only as abbreviations of B(0) or B(l) or 

... or B(k-l) . Theorems were free-variable formulas (in which

all variables occurred free of quantifiers), and new functions and

relations were introduced by means of primitive recursive defini

tion, with proofs following by mathematical induction. This 

schema is what Skolem called "the recursive mode of thought."

Taking the notion of natural number, the successor function, and 

the recursive mode of thought as basic, Skolem recursively 

constructed addition, multiplication, subtraction, division, and

the inequality relation, and then established elementary properties 
29of arithmetic. Next he showed that the greatest common divisor 

and the least common multiple are also recursive functions of

two variables and that the relation of primeness is recursive.

In the course of Skolem* s paper, two additional results 

concerning (primitive) recursive functions were given. First, the 

(ordinary) recursive schema of defining U(l) and U(n+1) in 

terms o± U(.n) was shown to be equivalent to the (course-of-values) 

recursion schema of defining U(l) and U(n+1) in terms of U(m) , 

for m£n . Second, Skolem provided an heuristic argument that

29 For example, addition was considered a function of two 
variables, a and b , such that when b=l , a+b is a+ 1 , 
i.e., the successor of a , and a+(b+l)=(:_+b)+i.
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Min(U,n) is recursive if U is recursive, where Min(U,n)

means Che least number k between 1 and n such chat U(k)
30and has no meaning if not-U(k) for all k from 1 to n . 

However, Skolem provided no formal definition of the class of 

recursive functions, nor were any of the properties of the class 

discussed.
31Two of Hilbert's papers on the foundations of mathematics

provided an account of recursive functions as part of an attempt to

prove the continuum hypothesis. The continuum hypothesis states,

in effect, that there are no sizes of infinity between the sizes

of the rational numbers and the real numbers. Besides being an

important (then) unsolved problem of mathematics, Hilbert was

also interested in it in order to use constructive techniques to

prove something important about infinite sets. In his version of
the continuum hypothesis, Hilbert attempted to show that there is

32a mapping of the ordinals of the second number class onto the 

set of number-theoretic functions (instead of onto the real

30 Skolem avoids Min(U) which is the least k such that 
U(k) since such a function presupposes the existence of an 
"actual infinity."

"On the Infinite," 1925, and "The Foundations of Mathe
matics," 1927, reprinted in van Heijenoort, pp. 367-392 and 
464-479, respectively.

32 The second number class is the set of ordinals which are 
countable, but infinite.
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numbers). His proof began with a metamathematical lemma based

more upon his philosophical presuppositions than upon reasoned 
33argument:

Lemma I. If a proof of a proposition contradicting 
the continuum theorem is given in a formalized version 
with the aid of functions defined by means of the 
transfinite |choice function| symbol e (axiom group 
III), then in this proof these functions can always be 
replaced by functions defined, without the use of the 
symbol e , by means merely of ordinary and transfinite 
recursion, so that the transfinite appears only in the 
guise of the universal quantifier.

Ordinary recursion defines a function of a number-theoretic 

variable by indicating what value it has for m* 0 and how the 

value for nrt-1 is obtained from that for m . "The generali

zation of ordinary recursion is transfinite recursion; it rests 

upon the general principle that the value of the function for a 

value of the variable is determined by the preceding values of the

function," and further remarks indicate that transfinite recursion
34also had for Hilbert the present meaning.

Hilbert demonstrated next that substitution (of a new

33 Reprinted in van Heijenoort, p. 385. The lemma arises 
because Hilbert is attempting to metamathematically justify the 
transfinite portions of mathematics. The attempted solution to 
the continuum hypothesis is apparently to demonstrate that every 
mathematical problem is solvable.

34 Quoted in van Heijenoort, p. 386. Definition by 
transfinite recursion is given by defining what value the function 
has at n=*0 , how the value at a+ 1 is determined from the value 
at a , and how the value at b is determined from the values 
at c for c<b , where b is a limit ordinal.
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variable or function) for an argument and (ordinary) recursion 

are sufficient to generate a broad class of new functions and 

subsume such function generating operations as defining a function 

up to a certain value, beyond which it is constant, or by defi

nition in terms of elementary processes obtained from arithmetic 

operations such as the remainder in a division. Once this was

completed, he was able to concentrate on the properties of these

two operations, substitution and recursion. This study represented 

the first attempt to analyze the properties of "recursive" 

functions.

He first showed that there is no standard form for the recur

sion schema if one is limited to number-theoretic variables.

He gave the following example. Let <j>^(a,b)*a+b , <{)2 (a,b)=a*b ,

(j>2 (a,b)=*a^ , and so on for <jî (a,b) , <j>̂ (a,b) , etc. That is,

each subsequent function takes as its operation the next higher 

operation in the hierarchy: addition, multiplication (repeated

addition), exponentiation (repeated multiplication), repeated 
exponentiation, etc. Then the function $(a)=<j> (a,a) (usually 

known as Ackermann's function) provided an instance of a function 

of an ordinary number-theoretic variable which can be generated by 

substitution and manifold, simultaneous recursion (on different 

variables at once), but cannot be generated by the standard 

techniques of ordinary, step-wise recursion on a single variable.

He showed, however, that the Ackermann function Q (a,b) could
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be defined recursively, if one allowed the following function 
35variables:

^(f,a,l) * a

^(f, a, n+1 ) = f(a, ^(f, a, n)); 

ij)̂ (a,b) = a+b 

<(>n+1 (a,b) - (̂<j)n,a,b).
36Another example provided an even more intractable recursion: 

<j>0 (a) = A(z)

<f>n:j.1 (a) - f (a,n,<()n ((j)n(n+a))), 

where A represented a known expression containing one argument, 

and f was a known expression containing three arguments. The 

difficulty here was that the value for n+ 1 could be obtained 

from the value for n . One must utilize the range of cj>n to 

determine . These difficulties were overcome by using

variable types in a more general recursion schema. Variable types

are variables of different types in the Russell sense of the

theory of types. Variable types of height zero are constants, of

height one are number-theoretic variables, of height two are 

variables of number-theoretic properties, and so on. The general

35 Reprinted in van Heijenoort, p. 388.
36 Reprinted in van.Heijenoort, p. 389.
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37recursion schema then reads: 

p(g,a,o) - a

p(g,a,n+l) - g(p(g,a,n),n)

where a is a given expression of arbitrary variable type; g is

a given expression of two arguments, of which the first is of the

same variable-type as a and the second is a number (thus, the

variable type of g must be of the same variable-type as a );

and p , the expression defined by recursion, is also of the same

variable-type as a . Specific recursions are obtained through

substitutions. In effect, through these examples, Hilbert has

demonstrated that there are recursive functions which are not

primitive recursive and has exhibited a normal form for a wide
38class of "general recursive functions."

The variable-types were the link that purportedly allowed 

Hilbert to correspond the number-theoretic functions to the numbers 

of the second number class. A natural correspondence arises 

since the way in which the numbers of the second number class 

increase in number is exactly analogous to the way in which the 

variable-types increase in height. A one-one correspondence 

between the numbers of the second number class and the number-

37 Reprinted in van Heijenoort, p. 389.

Hilbert does not use the term "general recursive function," 
but he does use the term "general recursive schema."
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theoretic functions can be constructed In a complicated way which

(roughly) involves constructing, for each ordinal 8 of the

second number class, a recursive function p which subsumes all

recursions of height $ . These proposed functions p are the
39earliest known predecessors of universal functions.

Unfortunately for Hilbert, his proof of the continuum
40hypothesis utilized transfinite recursion, while his general

recursion schema only provided for ordinary recursion. Thus,

Hilbert postulated Lemma II on no better grounds than he had
41postulated Lemma I:

Lemma II. If by adducing a higher recursion or a 
corresponding variable-type we have formed a function 
that has only an ordinary number-theoretic variable 
as argument, then this function can always be defined 
also by means of ordinary recursion and the exclusive 
use of Z-types [ordinary number-theoretic variables].

lu the 1927 paper, Hilbert admitted that Lemmas I and II had

not been justified in the 1925 paper and so tried to provide a
heuristic explanation of them. Lemma I, he claimed, was

dispensable for the proof of the continuum hypothesis, although

39 A function \p(x,y) is said to be universal if for all x 
and y , i|i(x,y)=Yx (y) ^  "Yx constitute the (partial)
recursive functions. More will be said of universal functions 
later in this chapter.

40 Transfinite recursion has the steps of the operations 
Indexed by all the ordinals, finite or infinite, while ordinary 
recursion is indexed by the finite ordinals alone.

41 Quoted in van Heijenoort, p. 391.
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useful in fixing Che train of thought. However, he hoped to 

retain Lemma II. The difficulty, he pointed out, was in showing 

that when a sequence a(n) of numbers of the second number class 

is given by a recursion

s (n+1) * Ka(n)) , 

where <j> is defined by transfinite recursion, this transfinite 

recursion can be eliminated. Certain cases where this elimination 

had been effected were exhibited, and he showed that the s 

numbers, those numbers a of the form a = aja , while normally 

defined by transfinite recursion, can be defined by ordinary 

recursion. However, the number of cases examined was far from 
exhaustive.

In the 1927 paper, Hilbert also gave examples of recursively 

defined functions. He first mentioned the well known facts that 

sum, product, and factorial could be defined recursively. Without 

proof, he added thac min(a,b) also could be defined recursively. 

Finally, he provided examples of two more complicated functions
r f a ' *  =  f 1  i f  a  i s  P r i m e

0 otherwise
and

ir(a) - the number of primes ia

which can be defined recursively in terms of the functions
0 if b is equal to one of the numbers l*a,

<j>(a»b,c) ={ 2 *a,...,c*a (b>0 ),
1 otherwise

R eprod u ced  w ith perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

108

and
the least of the numbers 1 ,2 ,...,a that are 

ij;(a,b,c) * { factors of b and >c,
b If none of these numbers has this property.

Thus, Hilbert added to the list of recursively defined functions

the functions min(a,b) and ir(a) (the others having been shown

recursively definable by Skolem and others). In addition, Hilbert

was the first to formally suggest relative recursive definition by

showing t(a) and ir(a) to be defined recursively in terms of
/ O<t»(a,b,c) and tjj(a,b,c).

In 1928 Ackermann finally published his long-awaited paper
/ *3defining the Ackermann iteration function. In this paper he 

adopted Hilbert's general recursion schema and the variable-type 

distinction, with number-theoretic functions being typed according 

to the type of the variable. Functions formed according to the 

Hilbert schema of level one are primitive recursive. Ackermann

/ O Actually, the procedure of showing functions recursively 
definable by constructing them from other recursively defined 
functions was accepted practice among all those working with 
recursion. However, the practice of reducing the recursive 
definability of one function to the recursive definability of 
another without giving the actual recursive definition later 
became a common and convenient procedure. This notion of relative 
recursive definition could easily be used in demonstrating that 
if ip is recursive, then so is 9 , for functions ip and 9 , 
without knowing whether ip is actually recursive.

/ O "On Hilbert's Construction of the Real Numbers," reprinted 
in van Heijenoort, pp. 493-507. This is the function given in 
Hilbert (1925).
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showed, however, that not all functions recursively definable 

according to the Hilbert schema, when using functions of type one, 

are capable of recursive definition by exhibiting a function which 

required variables of type two. He defined (|>(a,b,n) by 

(a,b,0 ) ■ a+b ,

(a,b,n+l) » pc(a,c,n),A(a,n),b) , 

where pc , a function of type two, is defined by 

Pc(f(c),a,0) = a ,

Pc(f(c),a,n+l) = f(pc(f(c),a,n)) , 

such that c is a dummy variable indicating that f is a

function of one variable and A(a,n) is the type one function

given by

A(a,0) * 0 ,

A(a,l) » 1 ,

A(a,n) » a for n>l .

If <f>(a,b,n) were of level one, <j>(a,a,a) also would be of 

level one— which he proved is false by demonstrating that it 

increases faster than any level one function. In the course of 

the argument he showed, however, that the Ackermann function is 

effectively calculable by the equations:

$(a,b,0 ) * a+b 

<j>(a,b,n+l) “ A(a,n)

<j)(a,b+l,n+l) * <j>(a,(j>(a,b,n+l) ,n) .

Nonetheless, this recursion did not fall under Hilbert's general
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schema because the recursion proceeded on two variables simul

taneously. Thus, Ackermann * s proof established that such multiple 

recursions need not be reducible to primitive recursion. The 

discovery of Ackermann's function prompted the classification of 

recursion schemas and, in particular, guided Herbrand in his
44definition of the notion of effectively calculable function.

By 1930 recursive functions had been used in various

foundational studies. A number of functions, especially of

arithmetic, had been shown to be (primitive) recursive, but it had

been demonstrated that there are effectively computable functions

which are not primitive recursive. A general recursion schema
45had been given, which was later shown to be equivalent to the 

present primitive recursion schema (of Gtfdel) if the functions were 

taken to be of type one. Multiple recursive definition had been 

shown to be more powerful than recursion on one variable. The 

notion of relative recursion had been introduced. Partial com

pleteness results had been given for formal systems capable of 

expressing mathematics, and complete success was thought to be 

imminent. This is the foundation which Gtidel shook in 1930

44 See van Heijenoort, p. 494, for details. Evidently, 
Herbrand's definition was a generalization of Ackermann's 
multiple recursion definition of the Ackermann function.

^  See R. Peter, 1934.
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with his Incompleteness result.

Attempts to Formulate a Discipline of Recursive Functions

Hilbert could possibly be given credit for being the first 

to examine the properties of the recursive functions. In his 

paper on the continuum hypothesis described above, he discussed 

in great detail the relationships between various recursion 

schemas and provided examples of recursive functions not really 

relevant to the main subject of the paper. Yet his research was 

intended only to solve a particular mathematics problem, not to 

characterize the properties of recursive functions. It was only 

in the mid-1930's that the properties of the recursive functions 

were studied in detail. Four independent characterizations of 

these functions were given by Kleene, Church, Turing, and Post. 

These were shown to be equivalent (mainly) by Kleene. A philo

sophical stance towards these functions was forwarded by Church. 

Research problems and techniques were identified and developed 

primarily by Church and Kleene. All of these developments 

turned the study of recursive functions into a mathematical 

discipline of its own. While the origins of the work of these 

four researchers are rather disparate, their research was related 

to GBdel's work on the incompleteness theorems.

The story, as it relates to GBdel, begins with a paper
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written by Herbrand in 1931 which provided a partial consistency 

result for the Hilbert program. Herbrand demonstrated the 

consistency of that fragment of arithmetic which can be developed 

if formulas in the induction schema are not permitted to have 

bound variables. In the course of the paper Herbrand defined the 

class of general recursive functions, illustrated the motivation 

that intuitionism provides to the study of recursive functions, 

and showed the relation of his consistency result to Gtidel's 

incompleteness theorems.

In order to avoid a full induction schema, Herbrand allowed 

for the construction of a class of functions, provided that: 

the hypotheses governing the construction of the functions 

contained no variables bound by quantifiers; considered intui- 

tionistically, the hypotheses made the actual computation of the

functions possible for every given set of numbers; and it was

possible to prove intuitionistically that a well-determined 

result could be determined. This provided another character

ization of the general, rather than primitive, recursive functions. 

For example, Herbrand showed that the multiple recursion discussed 

by Hilbert (above) falls under his schema.

The important point abcut the above definition of the

general recursive functions is its intuitionistic character. 

Herbrand was a follower of Hilbert and apparently only knew of
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46intuitionism secondhand, through Hilbert. As was common among

Hilbert's followers at the time, the term "intuitionist" was

used as much in the Hilbert sense of "finitary" as in the Brouwer

sense of "intuitionist." Herbrand used the term "intuitionist"

for the methods he considered admissable in metamathematics.
47Herbrand noted:

By an intuitionistic argument we understand an 
argument satisfying the following conditions: in it
we never consider anything but a given finite number of 
objects and of functions; these functions are well- 
defined, their definition allowing the computation of 
their value in a universal way: we never state that
an object exists without giving the means of constructing 
it; we never consider the totality of all the objects x 
of an infinite collection; and when we say that an 
argument (or a theorem) is true for all these x, we 
mean that, for each x taken by itself, it is possible 
to repeat the general argument in question, which should
be considered to be merely the prototype of these
particular arguments.

Thus the general recursive functions were intended by Herbrand as

a model of the "intuitionist" functions.

In the addendum to his paper, Herbrand discussed his (partial)

system of arithmetic in light of GBdel*s incompleteness result. He

first reconstructed GBdel*s argument in order to demonstrate that 

it is "intuitionistically" admissable, and then proceeds to show 

that GBdel*s method did not apply to Herbrand*s system. This was

See the discussion in van Heijenoort, p. 618. 

Quoted in van Heijenoort, p. 622.
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accomplished by a diagonal argument which showed that there is no 

"intuitionistic" (general recursive) means of enumerating the 

"intuitionistic" (general recursive total) number-theoretic 

functions of one variable.

The importance of Herbrand's work surfaced in a series of 

lectures given by GBdel during 1934 at the Institute for Advanced 

Study in Princeton. While the lectures were intended to provide 

a precise and succinct account of the incompleteness results, they 

were important as well for providing GBdel's first clearly 

developed, precise account of both the primitive and general 

recursive functions. The definition of a general recursive 

function used in these talks was explicitly credited by GBdel to 

Herbrand.

GBdel began with a discussion of the (primitive) recursive

functions. These functions were defined, for the first time, in

terms of initial functions and operations on previously given

(primitive) recursive functions.

The function <j)(x1>... ,xn) shall be compound with 
respect to ^(^i,...,Xq ) and Xi(xl»..., Xn) (i—1,2,...,n) 
if, for all natural numbers xi,...,xn,
Cl) (xi,..., Xjj) * ip ( !,.<•, Xq) ,..., Xn (xi,««•»Xn) ) .
(2) (f>(xi,... ,xn) shall be said to be recursive with
respect to (xi,... ,xn-t) and x(xl> • • • >Xn+i) if* f°r all 
natural numbers k, x2,...,xn ,

<f>(0,x2,...,xn) * Kx2,...,xn) 
and <j>(k+l,x2,... >Xq ) — x(h,<j>(k,x2,...,x^) ,x2,. •.,x^) .
We define the class of primitive recursive functions 
to be the totality of functions which can be generated 
by substituting, according to the scheme (1), and 
recursion, according to the scheme (2), from the

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

115

successor function xfl, constant functions 
f(xi,...,Xn)“C, and identity functions Uj (x^,...,xn)“Xj 
(l£j£n). In other words, a function <t> shall be 
recursive if there exists a finite sequence of functions 
4>l»>*>>$n which terminates with <t> such that each func
tion of the sequence is either the successor function x-HL 
or a constant function f(xi,...,Xn)«c, or an identity 
function, U^(x]_,... ,xn)a*Xj, or is compound with 
respect to preceding functions, or is recursive with 
respect to preceding functions. A relation R shall be 
recursive if the representing functions is r e c u r s i v e . ^

The (primitive) recursive functions, GBdel added, have the impor

tant property that, for any given set of arguments, the value of 

the function can be computed by a finite procedure. Similarly, 

(primitive) recursive relations are decidable, in the sense that, 

for a given set of natural numbers, it can be determined by a 

finite precedure whether the relation holds or does not hold.

Later in the paper, GBdel proved that the class of (primitive) 

recursive functions is not closed under multiple recursion. In 

particular, he showed that if tj;(y) and x(x) are given 

(primitive) recursive functions, then the function (j»(x,y) , 

defined inductively by the relations 

tp(o,y) = K y )
<Kxfl,0) ■ x(x) , 

ij>(x+l,y+l) * <{)(x, <j>(xfl,y)) is not, in general, (primitive)

48 Kurt GBdel, "On Undecidable Propositions of Formal 
Mathematical Systems," Institute for Advanced Study Monograph, 
Princeton, NJ, 1934, pp. 2-3.
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recursive. This left open the question of what is meant by "the

class of all recursive functions." First, GBdel proposed a notion
49proffered to him in a letter by Herbrand:

If <p denotes an unknown function, and l̂,«..,if>k 
are known functions, and if the t|/*s and the $ are 
substituted in one another in the most general fashions 
and certain pairs of the resulting expressions are 
equated, then if the resulting set of functional 
equations has one and only one solution for <p , <j> is
a recursive function.

In order to make Herbrand*s definition more formal and precise,

GBdel made two restrictions. The first was that the left hand side

of each of the functional equations defining <j> shall be of the

form:

01*11 (*1» • • • >*n) »'l*i2(3̂ l» • • • »• • • t^iliC^l* • • • i^n)) •
The second was that, for each set of natural numbers k^,....k^ , 

there shall be one and only one m such that <j>(k̂ ,... ,km)=m is 

a derived equation, where the derived equations are defined 

inductively from the given set of functional equations by:

(la) Any expression obtained by replacing all the 
variables of one of the given equations by natural 
numbers shall be a derived equation.
(lb) (k]_,... jkjj)^ shall be a derived equation if 
ki,... jlcQjm are natural numbers, and (k^,... ,1^)^ 
is a true equality,
(2a) If i|>-h  (k]_,... jkm)*^ is a derived equation, the 
equality obtained by substituting m for an occurrence

49 See op. cit., pp. 26-27.
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of 'I'i-j (k]_,... jkn) In a derived equation shall be a 
derived equation.
(2b) If .... kL)»m is a derived equation where
k^,...,kL,m are natural numbers, the expression 
obtained by substituting m for an occurrence of 
<t>(ki,... ,kL) on the right hand side of a derived 
equation shall be a derived equation.

This definition had the advantage that if ... ,x^) is

recursive, there is an arithmetical expression A(x^,...,

that

<J>(Xp • • • ,xL) = y if and only if A(x^,... »xL>y).

In a later letter, GBdel remarked on Herbrand*s contribution to 

the definition of "general recursive function"

I have never met Herbrand. His suggestion was made 
in a letter in 1931, and it was formulated exactly as
on page 26 of my lecture notes, that is, without any
reference to computability. However, since Herbrand 
was an intuitionist, this definition for him evidently 
meant that there exist a constructive proof for the 
existence and unicity of <j> . He probably believed that 
such a proof can be given only by exhibiting a compu
tational procedure. . . .  So I don't think that there 
is any discrepancy between his two definitions as he 
meant them. What he failed to see (or to make clear) 
is that the computation, for all computable functions, 
proceeds by exactly the same rules. It is this fact 
that makes a precise definition of general recursive
ness possible.

Thus, out of Herbrand*s attempt to create an intuitionistic

metamathematics arose GBdel*s precise and formal definition of

x.) such

^  In a letter from GBdel to van Heijenoort in 1963, quoted 
in van Heijenoort, p. 619.
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the notion of general recursive function.

Kleene and Rosser, graduate students at Princeton University 

at the time, were assigned the responsibility of talcing notes from 

GBdel's 1934 lectures for the purpose of publishing a monograph. 

Rosser went on to strengthen GBdel's incompleteness theorems, 

while Kleene was responsible for developing GBdel's definitions of 

recursive functions into a mathematical theory. In 1936 Kleene 

published his first paper^ on general recursive functions based 

on the Rerbrand-GBdel definition.

The first section of Kleene1s paper included several 

equivalent definitions of general recursive functions by specifying 

the forms of the equations and the admissable kinds of steps in 

the computation of a value, a normal form for general recursive 

functions and related results, and some general theorems about 

recursive enumerability. The second section of the paper consi

dered which systems of equations define recursive functions under 

the general schema. It was demonstrated that the systems which do 

define recursive functions can not be recursively enumerated 

(under an appropriate GBdel coding of the systems into the natural 

numbers). This fact then was utilized to demonstrate, in a way 

different from GBdel's, the existence of undecidable number- 

theoretic propositions in formal logic satsfying certain conditions.

51 Stephen C. Kleene, "General Recursive Functions of Natural 
Numbers," Mathematische Annalen. 112 (1936), pp. 727-742.
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Kleene*s definitions of primitive and general recursive were
52similar to those of GBdel. A function which can be defined from

the initial functions (successor function, constant function 0 ,

identity functions) by a finite number of applications of

substitution and ordinary recursion was said to be primitive

recursive. Of the three equivalent definitions of general recursive

functions given by Kleene, the one most similar to GBdel*s read:

The functions X^,...,Xn are defined recursively by 
E if E is a system of equations in X Xn such
that for each i (i=l,...,n) and each set of numerals 
kl,...,ks^ there is exactly one numeral k (called the
value of Xi(ki,...,ks^)) for which
E f'l;3 ^i(ki,... ,ks^) = k .53 a function Xn is recursive 
if there is an E of this description.

Using this definition Kleene defined and proved several fundamental
54theorems concerning recursive enumerability. He continued by

Kleene uses the term "primitive recursive" for what 
sUdel calls "recursive."

53 A(-̂  3B means that B is provable from A , allowing 
members to 6 e substituted for free variables and equals to be 
substituted for equals.

54 A set is recursively enumerable if it can be effectively 
listed, i.e., if it is empty or is the range of a recursive 
function. See the Kleene paper cited in note 50 for details of 
theorems on recursive enumerability proved by Kleene.
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proving the normal form theorem^ for recursive functions, which 

characterized their structure by showing how they could be 

expressed in a certain logical "normal" form. This was undoubt

edly the seminal paper in the theory of recursive functions, for 

it introduced the techniques and types of results that would be 

used in the field for the next thirty years.

However, one serious problem remained unresolved which 

precluded much interest in the theory of recursive functions.

Just what was the substance of the theory? It was clear from 

GBdel’s work that the recursive functions were useful in proof 

theory (metamathematics). It was also known that there was some 

connection between the recursive functions and the functions 

Brouwer would allow. But what precisely was the connection? The 

answer was first suggested by Alonzo Church, professor of logic 

at Princeton University (and advisor to Kleene and Rosser). To 

fully understand Church1s answer, his work on the lambda- 

calculus must first be described.

Theorem IV in the paper cited in note 50 states’ "Every 
recursive function is expressible in the form ifi[ey(R(x>y))]» 
where 4>(y) is a primitive recursive function, R(x,y) is a 
primitive recursive relation, and (x)(Ey)R(x,y)." ey(R(x,y)) 
means the least y such that R(x,y).
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56In papers of 1933 and 1934 Church attempted to formulate a 

set of postulates for the foundation of formal logic which would 

at once avoid the set-theoretic paradoxes and also avoid the 

artificial encumberences of the two. other known solutions of the 

paradoxes, Russell's theory of types and Zermelo's axiomatic set 

theory. Church's plan was to develop a formal system which 

avoided the use of free (unbounded) variables and limited the use 

of the law of the excluded middle, ^  the two features he believed 

were reponsible for being able to construct the paradoxes in a 

formal system. In part, the reason for the restriction on free 

variables was that Church wanted every proposition and every 

function to have a precise, unambiguous denotation. For example, 

in the case of Russell's paradox, the set of all sets which are 

not elements of themselves has no precise, unambiguous denotation

^  Alonzo Church, "A Set of Postulates for the Foundation 
of Logic," Annals of Mathematics, 33 (1932), pp. 346-366, 
and 34 (1933), pp. 839-864.

^  The law of the excluded middle states that every 
proposition is either true or false— that there is no middle 
position. Although this position seems innocuous enough,
Brouwer's intuitionism made a big point of denying this principle. 
According to Brouwer, a proposition was true only when you could 
provide a construction of its truth, and a proposition is false 
only when you can provide a construction of its falsity. Thus, 
for Brouwer, there are proposition (for which there is no 
construction) which are neither true nor false. See Chapter I 
for details. The Law of Excluded Middle is called the Principle 
of Excluded Third by Brouwer.
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because it is impossible for S to be a member of S , but yet it 

is also impossible for S not to be a member of S . As Church 

stated:^8
One reason for avoiding use of the free variable is 

that we require that every combination of symbols 
belonging to our system, if it represents a proposition 
at all, shall represent a particular proposition, 
unambiguously, and without the addition of verbal 
explanations. That the use of the free variable 
involves violation of this requirement, we believe 
is readily seen. For example, the identity 
(1) a(b+c) ■ ab + ac
in which a, b, and c are used as free variables, does 
not state a definite proposition unless it is known 
what values may be taken on by these variables, and 
this information, if not implied in the context, must 
be given by a verbal addition. The range allowed to 
the variables a, b, and c might consist of all real 
numbers, or of all complex numbers, or of some other 
set, or the ranges allowed to the variables might 
differ, and for each possibility equation (1) has a 
different meaning. Clearly, when this equation is 
written alone, the proposition intended has not been 
completely translated into symbolic language, and, in 
order to make the translation complete, the necessary 
verbal addition must be expressed by means of the 
symbols of formal logic and included, with the 
equation, in the formula used to represent the 
proposition. When this is done we obtain . . . [some 
formal symbolic expression] . . . .  And in this 
expression there are no free variables.

Church recognized and explained the relationship of his work 

to Brouwer’s intuitionism. Both placed restriction on the use of 

the law of excluded middle. Both insisted that each proposition

58 Ibid., 33, p. 346.
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be given a single, precise definition. However, Church differed

from Brouwer in formulating his approach in a formal symbolic 
59logic. Church was particularly concerned about the free use made 

in mathematics of formulas and equations without concern for their 

domain of definition. Part of his solution involved the introduc- . 

tion of a new notation, AX|m | , which denoted the function whose 

values are given by the formula M (which includes a precise 

statement of the domain of definition). This was the sole way of 

introducing a new function in Church's system. Church then 

provided a list of five rules of procedure and thirty-five 

postulates which were the only ways in whic*. functions and 

propositions could be related in order to do mathematics.^

As Church began to work with his X-calculus, as the new 

formal system was called, he was surprised at how many functions

Brouwer argued that all formal systems are necessarily 
inadequate to express the truths of mathematics. Thus Brouwer 
was not impressed by Hilbert's formalist program.

^  Church had to change the system in the 1933 paper because 
the 1932 system still admitted a form of the paradoxes. Church 
was not completely certain that the weakened 1933 system was 
adequate for the expression and proof of all of classical 
mathematics. Church's intention was to provide a secure logical 
system in which all of mathematics could be expressed and proved. 
He had no illusions, however, that mathematics would ever be 
carried out in his system. His system was just intended to show 
that there was a secure logical foundation for the mathematics 
already done in a more intuitive, less precise, classical 
framework.
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could be defined essentially "from scratch" within his X-calculus. 

Such functions he called \ -definable. After working with these 

X-definable functions for some time, he came to believe that they 

provided him with an adequate characterization of those functions 

which one informally thinks of as effectively computable, 

computable in a series of steps that can. be computed mechanically 

without ingenuity for all values of the variable once a calculation 

schema had been provided. In order to provide a more precise 

characterization of X-definability, a series of definitions had to 

be given. The well-formed sequences of symbols in the X-calculus 

were defined by the following rules.

(i) A variable x standing alone is well-formed.
(ii) If F and X are well-formed, F{(X)} is well-formed.
(iii) If M is well-formed, so is Xx[M] .

C{F}(X) is, heuristically, a formalization of the function F(X) , 

while Xx[M] is supposed to represent that function of x, M.

Bound and free variables were defined then in the formal modem 

fashion by induction.) stood for the result of substituting

N for x throughout the sequence M. There were then three 

admissable types of operations on sequences of symbols:

I. Replace \s [m] by Xy[S^M|] where y does not occur in M.
II. Replace {Xsj^ljKN) by SNM , provided that bound variables 

of M are distinct from x and from the free variables of N.
III. Replace S$M| (not immediately following X) by {Xx (m]}(N) , 

provided that the bound variables of M are distinct both from 
x and from the free variables of N.

Any finite sequence of these operations was called a conversion.

If B were obtainable from A by a conversion, then A was said to
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be convertible into B, or, in short, "A conv B". A formula was 

said to be in normal form if it was well-formed and contained no 

part of the form {Xx |m |}(N). If the variables occurred in linear 

order (under the GUdel coding) without repetition after the 

signs in a formula of normal form, the formula was said to be in 

principal normal form. The normal form of a formula was unique 

up to applications of operation I. The positive integers were 

then represented in the X-calculus in the following way:

->-ab.a(b),
->-ab.a(a(b)),
-+-ab.a(a(a(b))) , and so on.

A function F of one positive integer was said to be 1-definable 

if it were possible to find a formula _F such that, if F(a)*r, 

then l?Qn)conv jr . Kleene had already shown, in 1935, that each of 

a large class of important functions is 1-definable. In the case 

of any X-definable function of positive integers, the process of 

conversion of formulas to normal form provided an algorithm for the 

effective computation of particular values of the function. The 

question of whether a particular formula _F of the 1-calculus 

could be converted into normal form is the analogue to the 

question of whether F is recursive or not.

The problem with the characterizations of Kleene and 

especially of Church was that, while they were technically precise 

and accurate, they were not at all intuitive. Church was surprised 

when he was able to demonstrate that function after function was
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X-calculable. Eventually, Church came to believe that his defi

nition of a X-calculable function and Kleene*s various definitions 

of a general recursive function were co-extensive and that they 

both should be identified with the intuitive notion of an effec

tively computable^ function. This belief became known as 

Church's Thesis and became a powerful methodological tool in the 

study of constructible functions.

No longer did one have to worry about the relative powers 

and interrelations of the various formal systems, as all were 

equivalent. Since they were equivalent, all of the theorems 

proved in the various formal systems could be grouped together as 

theorems about one common discipline. However, when a particular 

problem was broached, one could attempt to solve it, with 

equanimity, in the most convenient formal system. But, perhaps 

most important of all, Church's thesis provided logicians with an 

intuitive way of thinking about these functions. It was hard for 

one to have any intuition of the properties of the X-calculable 

functions. Indeed, the originator of the definition was often

61 An effectively computable or algorithmic procedure is a 
general procedure applicable to a certain class of symbolic 
inputs such that from each input will eventuate a symbolic 
output. The procedure must be deterministic (or mechanical) in 
the sense that the process of execution must be completely 
specified and unambiguous, and that there must be no need for 
creative imagination on the part of the "computer."
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surprised by which functions were A-calculable, and it was only 

after a good deal of work with the X-calculus that Church's 

Thesis was voiced. However, researchers had fairly good intui

tions about effectively computable functions. This allowed them 

to formulate ideas and proofs informally and only later to verify 

them in some convenient formal system. Much recursion theory was 

done in this manner then, and much continues to be done in this 

way today.

The Turing and Post Machine Characterizations of the 

Recursive Functions

Unfortunately, there was no way to prove Church's Thesis.

The informal notion of an effectively computable function is 

imprecise, and there was no hope of giving it any precision without 

turning it into one of the specialized formal systems with which 

the logicians wished to prove it co-extensive. But unless it were 

fairly precise, there would be no a priori way to demonstrate 

that an effectively computable function has exactly the same 

properties as, say a X-calculable function. Church believed that 

there were already ample empirical grounds for believing in 

Church's Thesis and that these grounds would be improved each time 

independent formal characterizations of these functions could be
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62proved equivalent. (Over time a number of independent and 

equivalent characterizations were formulated.)

Perhaps the whole issue would never have arisen and everyone 

would have accepted Church's Thesis on the basis of those functions 

Church and Kleene had shown to be or shown not to be formally 

computable (in their systems) had it not been for GBdel. Although 

he was a young man, GBdel*s authority in logic was overwhelming, 

due to the stature of his completeness and incompleteness theorems. 

He was a stubborn, conservative man, not inclined to accept 

statements without adequate mathematical justification. Witness 

the formulation of the incompleteness theorem in light of the 

almost universal optimism over the possibility of successfully 

completing Hilbert's program. Not surprisingly, GBdel was not 

convinced of Church's Thesis. Of all the formal characterizations, 

Church's came under special attack. Being X-calculable seemed to 

GBdel to have nothing to do with a function being computable in a 

series of stages. GBdel demanded a formal characterization which 

formally modeled the informal process of computing a function. It 

is iu. this regard that Alan Turing's work on computable numbers 

was so important. Turing provided a clear, intuitive precise

62 Church, Turing and especially Kleene wrote articles 
providing laborious mechanical combinatoric procedures for 
translating the proofs and definitions in one formal system to 
those in another in order to establish the equivalence of the 
various formal systems.
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formalization of the process of mechanically computing a number; 

and it was only with Turing*s characterization that GBdel became 

convinced of Church*s Thesis. In this light it is understandable 

why Church was anxious to have Turing come to Princeton when he 

heard about Turing*s paper on computable numbers.

Turing, while an undergraduate at Cambridge, was fascinated
63by Riemann's conjecture and became interested in actually 

calculating the real parts of the zeroes of the zeta function.^

He designed a machine for the task and actually cut the teeth for 

the gearing mechanism himself in a Cambridge laboratory, although 

he never completed construction of the machine. This project made 

him wonder just which numbers in mathematics are mechanically 

computable. Upon reflection, he concluded that the mechanically 

computable numbers are exactly those which can be computed by a 

theoretical -’lachine which he designed, now known as a Turing 

machine. Alonzo Church heard about Turing's work on computable 

numbers, recognized its importance to his own work on calculable 

functions, and offered Turing a fellowship to Princeton to work for 

a Ph. D. Although Turing had not done any significant work in

^  This is mentioned in Gandy's obituary note on Alan 
Turing and is discussed briefly in Sara Turing's biography of 
her son.

6 4 Apparently the machine was designed to test Poincare's 
famous conjecture that all of the real parts of the zeroes of the • 
zeta function are equal to one-half.
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logic prior to this, he saw the possibilities of his Turing 

machines for logic and matriculated in the fall of 1936. Turing 

was happy to go to Princeton, for at the time Princeton was the 

best research center in logic outside of GHttingen and perhaps 

the best mathematics research center in the United States. The 

distinguished logic faculty included Church at the university and 

GBdel and von Neumann at the Institute for Advanced Study.

While at Princeton, Turing was thoroughly trained in

mathematical logic. He used this training to advantage in his
65famous 1936 paper, "On Computable Numbers," in which he described 

his Turing machine and demonstrated certain of its consequences for 

mathematical logic. This paper provides a rather different formal 

account of effective computability than those of Church and Kleene. 

The object of study for Turing was the set of computable numbers, 

those numbers which are computable by a machine— in particular, 

by his Turing machine. At first the goal was simply to character

ize those numbers which could be computed in some mechanical 

fashion. However, the final published version of the paper, 

completed in the presence of the logicians at Princeton, contained 

many results important to logic, such as a proof of the existence

Alan M. Turing, "On Computable Numbers, with an Application 
to the Entscheidungsproblem," Proceedings of the London Mache- 
matical Society, series 2, volume 42 (1936-1937), pp. 230-265.
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of a universal Turing machine, a proof of the negative solution of
66the Entscheidungsproblem, and many observations relating his 

work to other work in logic by Church and Gtidel.

Turing's machines consist of a one-dimensional tape, 

broken into squares, and a mechanical device capable of scanning 

and performing various operations on the tape. The machines 

operate in discrete time units. At any moment there is only one 

square being scanned by the machine. Each square is capable of 

bearing at most one symbol. Depending on the internal state 

(called the m-configuration) at the moment and on what symbol, if 

any, is in the scanned square, the machine can move the tape one 

square to the left or right, print or erase a symbol, or effect 

any (non-contradictory) combination of these operations. Given 

the m-configuration of the machine and the scanned symbol, the 

behavior of the particular machine is completely determined.

There are two kinds of symbols. 0 and 1 constitute symbols of 

the first kind, while all other symbols are of the second kind. 

Symbols of the first kind are used for input and output, while 

symbols of the second kind are reserved for internal use of the 

machines. If a machine never writes down more than a finite number

66 The Entscheidungsproblem is the decision problem of 
interest in Hilbert's program, an effective procedure for 
deciding the provable theorems of a formal system. It was 
formulated explicitly by Hilbert and Ackermann in 1931.
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of symbols of the first kind, it is called circular. Otherwise, it 

is called circle-free. Circle-free machines are those which are 

able to complete their computation and express their output in 

a sequence of symbols of the first kind. Circular machines are 

ones which result in an infinite repitition of the same finite set 

of symbols (a loop in modern parlance) or which stop before 

completing their computation.

Turing machines are designed to produce appropriately coded 

sequences of numbers as output, corresponding to the decimal 

expansion of the fractional part of a number. A sequence is said 

to be computable if it can be computed by a circle-free machine.

A number is said to be computable if it differs by an integer 

from a computable sequence.

Turing believed that any number which is computable in this 

formal sense is computable in the intuitive sense of being able to 

write down the computation of the number with paper and pencil. 

Thus, the computable numbers comprised Turing's version of the 

recursive functions. Although Turing concentrated on the 

computability of numbers, his characterization amounted to the 

same as those describing computable functions. Just consider the 

computable number as the value of the computable function. For 

example, if Kleene were to show a function f to be recursive,

Turing would have to show that f(b) is a computable number for 
suitable values of b.
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For each different number to be computed, there was a

different Turing machine. Thus, different Turing machines would

be requi . to compute f(b) and f(c). Computable numbers were

characterized by a description of the machine which computed the

correlative computable sequence. Descriptions of the machine were

expressed in a standard form as a sequence of quintuples. A

quintuple q^s^s^Lq^ , for example, stated that, whenever the

machine is in m-configuration q^ with scanned symbol ŝ  , it

should erase symbol s. , print symbol s. , move one square to the
1 *■

left, and assume m-configuration q^ . These quintuples could then 

be coded into the integers (GBdel numbered) in such a way that each 

machine M(n) had a description number M . A number which was the 

description number of a circle-free machine was called a satis

factory number. The coding was such that, to each computable 

sequence, there corresponded at least one description number; 

while to no description number did there correspond more than one 

computable sequence. This proves that the computable sequences 

and numbers were enumerable.

Turing gave examples of several machines by specifying their 

quintuples. The most important of these was the universal 

computing machine U . If this machine U is supplied with a tape 

on the beginning of which is expressed (in code) the standard 

description of some computing machine M , then U will compute 

the same sequence as M . This was an elaboration of the notion

R eproduced  w ith perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

134

of universal functions which was first hinted at by Hilbert in 

1925. This idea, that an effectively computable function <Kx,y) 

can be found such that >|/(x,y) » <J> (y) , where the (f> are the 

effectively computable functions of one variable, became a standard 

and important research tool in recursion theory.

One of the most important results of Turing's paper was the 

affirmation that a general (algorithmic) procedure for determining 

whether a given number is the description number of a circle-free 

machine does not exist. This was a direct analogue of Church's 

and Kleene*s earlier discovery that the set of GBdel numbers for 

the recursive functions is not recursive, that is, that there is no 

recursive function which will give output 0 if b is in the 

set of GBdel numbers and 1 if b is not in the set of GBdel 

numbers, for input b . Like Church's and Kleene's, Turing's 

proof relied on a diagonal argument. ^  Turing's proof demonstrated 

similarly the unsolvability by reducing the problem to another 

problem which could be shown to be recursively unsolvable, i.e., 

for which there was no general algorithmic procedure for 

deciding the question. In this case, the reduction was to the

^  The diagonal argument, originally devised by Cantor, was 
a powerful and often used tool in logic. The general technique 
of a diagonal argument was to form a new sequence from given 
sequences by manipulating the nth entry in the nth sequence, 
for each positive integer n . Turing’s particular use of the 
diagonal argument is described in detail later in this section.
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halting problem: whether there is an effectively computable

procedure which will decide whether the computation of the nth 

decimal place in the nth computable sequence (under the ordering of 
the GBdel coding) will halt (compute to completion) or not.

Reduction to the halting problem became the general procedure for

demonstrating the recursive unsolvability of problems both in 

recursion theory and in the application of recursion theory to 

problems in other areas of mathematics.

Turing actually gave two proofs of this important result. The

first was a strictly mathematical proof relying directly on the

diagonal argument.
If the computable sequences are enumerable, let an
be the n-th computable sequence, and let <j>n (m) be the
m-th member in . Let $ be the sequence with
l-$n (n) as its n-th figure. Since B is computable,
there exists a number K such uu.£Lt l-$n(n) = $K(n) 
all n . Putting n » K , we have 1 » 2<(>k (K) , i.e.,
1 is even. This is impossible. The computable sequences
are therefore not enumerable.68

However, as stated above, Turing had already proved that the

computable sequences are enumerable. Thus, there must be a fallacy

in this proof, and Turing pointed to the assumption that 3 is

computable.

The fallacy in this argument lies in the assumption 
that 3 is computable. It would be true if we could 
enumerate the computable sequences by finite means, but 
the problem of enumerating computable sequences is

Turing, op. cit. , p. 246. The following quotation is from 
the same page.
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equivalent to the problem of finding out whether a given 
number is the D.N. (description number| of a circle- 
free machine, and we have no general process for doing 
this in a finite number of steps. In fact, by applying 
the diagonal process argument correctly, we can show 
that there cannot be any such general process.

The simplest and most direct proof of this is by
showing that, if this general process exists, then
there is a machine which computes 3 -

Although Turing realized that he had outlined an acceptable 

mathematical proof that there is no general algorithmic procedure 

for determining whether a given number is the description number 

of a circle-free machine, he recognized that he had not given an

intuitive proof of the result. He accomplished this in a second

proof, which showed exactly what went wrong when one attempted to 

construct a Turing machine for this task. His argument was as 

follows:

Suppose there were a machine D which, when supplied with 

the standard description N of any computing machine M(N) , would 

test N in a finite number of steps and either print "0" if 

M(N) were circular or print "1" if M(N) were circle-free.

The postulated machine D would then print a sequence of 0*s or 

lrs, each entry being completed in a finite number of steps. Thus 

D would be circle-free.

By combining machine D with the universal machine U , a 

circle—free machine H could be constructed to compute the sequence 

S' , whose nth entry was the nth entry of the nth computable 

sequence (under the GBdel coding). H would carry out its
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computation as follows: 0 would be entered into E . After a

finite number of steps, H would print either "0" or "1." If 

H printed 0 , then 0 (the number entered in E ) was not the 

description number of a circle-free machine. So, the next number,

1 , would be entered in E . This process would continue until 

some number n^ was entered in E such that E printed "1."

Then n^ would be the description number of a circle-free machine 

M(n^) . Next the universal machine would be used to compute M(n^),

which is the same sequence as U(n^) . Then E would print the

first entry of M(n^) as the first entry of ($' . n^+1,n^+2,n^+3,

... would be entered in E , repeating the process above until 

another number ^  was found, such that E printed "1" with 

input n£ . U would be used to generate the sequence UC^) =

MO^) . The second entry of would then be printed by E

as the second entry of 6" . n^n^n^,... would be similarly

located and E would print the jth entry in U(n^) as the jth 

entry of .

Since D and U were circle-free, so was E . E must have 

some description number K . Consider what would happen when E 

ran across the entry K in computing &' . First K would be 

placed in machine D . Since E is circle-free, D would print

a "1" for K and so K would be entered in U . U would start

to compute the sequence U(K) = M(K) * E . In other words, U 

would begin to compute sequence g' . U would have no trouble
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computing the first part of sequence 8' , * *^ap *
where n is the largest number smaller than K which is the P
description number of a circle-free machine. But in order for U 

to print the next entry in 3' > namely 8"^ , it would have to go 

back and print the sequence for M(K) * H . When.it tried to do

this, it would get as far as printing • In

order to print the next entry it would have to go back and first

print M(K) . Thus, the machine would enter an infinite loop,

repeatedly printing 0'*tl̂ B'n.2* * *®**np ^  t l̂e attempt to print the
(p+l)st entry of (S', namely B^R . This contradicts the fact that 

H is circle-free. Therefore the assumption was false that there 

is a circle-free machine D which would determine whether a 

description number is the number of a circle-free machine.

This method allowed Turing to demonstrate that Hilbert's 

Entscheidungsproblem is recursively unsolvable, that is, that there 

is no Turing machine which will determine which are the provable 

theorems of a formal theory. Using the above method, he first 

showed that there is no machine which, when supplied with the 

standard description of an arbitrary machine M , will determine 

whether M ever prints a given symbol. Then, for each machine 

M , a formula Un(M) was to be constructed for which, if there 

were a general effective procedure for determining whether Un(M) 

is provable, there would also be a general effective procedure for 
determining whether M ever prints 0 . Un(M) was to be a
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statement of the form "In some configuration of M , 0 appears

on the tape." It could then be proved that 0 appears on the 

tape in some configuration of M if and only if Un(M) is 

provable. If there were a general effective procedure for 

determining whether M ever prints 0 . Hence, the Entscheidungs- 

problem was shown to be recursively unsolvable.

Like Church's paper, Turing's is interesting for its attempt 

to demonstrate that the formal notion is equivalent to the 

informal notion of effective computability. He addressed the 

problem by considering what the possible processes are for 

computing a number. He then applies three types of arguments in 

order to justify Turing machine computability as the formalization 

of effective computability:

(a) direct appeal to intuition;

(b) proof of the equivalence of different formalizations; and

(c) examples of large classes of numbers which are Turing machine 

computable.

Appealing to intuition, Turing argued that his machine 

performs exactly those operations that the human mind does in the 

computation of a number, and that it has similar processes and 

limitations. It was this similarity of Turing machines to the 

actual human process of computing that convinced GHdel that Turing 

had an adequate characterization of the computable functions.
The machine is the analogue of the mind of a human computer, and
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the tape is the analogue of his scrap paper. The scanned square 

is the only one of which the machine is "directly aware." The 

number of different symbols which may be printed is to be finite, 

for otherwise the differences between the symbols would fall below 

the level of human discernment. The internal "m-configuration" 

represents the "state of mind," and behavior at any moment is 

completely determined by the "state of mind" and observed 

symbols. The number of m-configurations is finite for a reason 

similar to the reason for finite restriction on the number of 

symbols. The operations of the machine correspond to the simplest 

operations of which a human computer is capable: writing down or

erasing symbols, shifting attention right or left, or changing 

"state of mind." Thus, Turing contended that the Turing machine 

provided an adequate analogue to the human computation of a number.

Turing argued that if there were alternative formalizations 

of the notion of effective computability, a demonstration of the 

equivalence of these formal notions would provide important 

evidence that they coincide with the informal notion. Such 

equivalence preserved the integrity of intuitions; it provided 

evidence that they have mathematical substance and are free of 

inconsistency. Moreover, the intuitive appeal of various formal 

notions may be different, and equivalence maximized the intuitive 
appeal. In this vein, Turing demonstrated that if the Hilbert 

functional calculus were to be modified so as to be systematic and
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only Involve a finite number of symbols, there would be a machine 

K , which would find all of the provable formulas of the calculus.

An appendix to the paper sketched a similar result: the equivalence

of X-definability and Turing computability.

Turing's third argument was based on the exhibition of a 

large class of computable numbers. He demined the computable 

functions in terms of the computable variables and then showed 

(among other things) that:

(a) A computable function of a* computable function of an 

integral or computable variable is computable;

(b) If $(m,n) Is computable and r is an integer, then 
n(n) is computable, where

n(0) *  r

n(n) » <j)(n,n(n-l)) ;

(c) the real algebraic numbers are computable;

(d) the real zeroes of the Bessel functions are computable; 

and

(e) the limit of a computably convergent sequence is comput

able.

Thus, he demonstrated that a large class of the informally 

computable functions of mathematics were Turing computable.

Turing believed that these three arguments were sufficient 

demonstration that effective computability should be identified 
with Turing computability.
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In 1936 Emil Post, mathematician at New York University,
69published a paper presenting the new notion of a finite 

1-process, which was strikingly similar to Turing's notion of 

computability. Although Post was aware of GUdel's and Church's 

results, he had not seen Turing's paper, which was at the publish

er's about to be printed, when his own paper was submitted.

Although the basic ideas of Turing and Post were so similar as to 

be redundant, Church, the editor of the journal to which Post's 

paper was submitted, decided to publish Post's paper anyway, 

together with a note explaining the independence of Post's and 

Turing's results.

The notion of finite 1-process consisted of two concepts: 

a symbol space consisting of a two-way infinite sequence of boxes 

ordinally similar to the integers, and a fixed, unalterable set of 

directions which direct operations in the symbol space and determine 

the order in which those directions are to be applied. The worker 

could work in but one box at a time, but could move from box to 

box. Each box was either empty or had a single, vertical stroke 

in it. The worker was able to perform the following primitive 

acts:

(a) Marking the box he was in (assuming it to be empty),

^  Emil L. Post, "Finite Combinatory Processes, I,"
Journal of Symbolic Logic, 1 (1936) pp. 103-105.
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(b) erasing Che. mark in Che box he was in (assuming ic Co be 

marked),

(c) moving Co Che box on his righc,

(d) moving Co Che box on his lefc, and

(e) determining wheCher Che box he was in was or was noc 

marked.

There was also a sec of operaCions which were Che same for 

each specific problem. They began wich:

Scare ae Che scarcing poinc and follow direcCion 1 .

This was followed by a finice number of direcCions numbered 1, 2, 

..., n, wich Che ich direction having one of the following forms:

(A) Perform operation [p^ ■ (a), (b), (c), or (d)] 

and Chen follow ,

(B) Perform operation (e) and, according as Che answer is 

"yes" or "no", correspondingly follow directions or
• I? __> or

(C) Stop.

Finite 1-processes were intended to solve general problems, 

each of which consisted of an enumerable number of specific 

problems ordered by the positive integers. A set of directions was 

considered applicable to a general problem if, in its application 

to specific problems, operation (a) was never ordered for marked 

boxes and operation (b) was never ordered for unmarked boxes. The 

set of directions was said to determine a finite 1-process if it
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were applicable to the general problem and if the process 

terminated for each specific problem. A general problem was called 

1-given if a finite 1-process was determined which, when applied 

to the positive integers (the integer n given by marking n 

consecutive boxes to the right of the starting box), yielded, 

in a one-one fashion, the class of specific problems constituting 

the general problem. A finite 1-process yielded a 1-solution to a 

general problem if the answer it yielded for each specific problem 

was correct. If a general problem were both 1-given and 1-solved, 

a finite 1-process could be found which gave the answer to each 

specific problem when the latter was represented by a number in 

symbolic form.

Post believed (but did not provide a proof) that his formu

lation was equivalent to general recursiveness. However, his 

purpose was not merely to provide any symbolic system with the 

ability to compute solutions to specific problems, but a system 

which had "psychological fidelity." Like Turing's, Post's system 

was supposed to model the way in which humans compute. Unlike 

Church, Post did not regard his formal notion as one to be 

identified absolutely with effective computability, but rather 

accepted this as a working hypothesis which he further confirmed 

by increasing the class of computations which had been shown to 
be 1-finite.
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Conclusions

By late 1936* four formal notions had been presented for the 

informal notion of effective computability: general recursiveness

(GiJdel-Herbrand-Kleene) , \-definability (Church), Turing computa

bility (Turing), and 1-finiteness (Post). The question remained 

whether these notions were equivalent or not. If they were not, 

which was to correspond to the informal notion of effective 

computability? Or was this notion even consistent and formalizable 

mathematically? Papers by Kleene and Turing^® answered this 

question. They used tedious combinatorial arguments to show how a 

definition in any one of these formal systems could be translated 

into a definition in any of the other formal systems. By the end 

of 1937, it was known that the various formal notions were 
equivalent. This confirmed the belief that the intuition of 

effective computability was sacrosanct, and that these formal 

notions adequately characterized it.

The papers of Kleene, Church, Turing, and Post constituted 

the incipient period of recursive function theory. The alternative

^  Stephen C. Kleene, "X-definability and Recursiveness,"
Duke Mathematical Journal, 2 (1936), pp. 340-353, and Emil L.
Post, "Recursively Enumerable Sets of Positive Integers and their 
Decision Problems," Bulletin of the American Mathematical 
Society. 50 (1944), pp. 284-316.
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formal notions of effective computability had been proved 

equivalent and there was confidence that these notions appro

priately formalized intuitions. Precise, formal definitions had 

been given of primitive, general, and partial recursive functions 

corresponding to various informal notions of effective computa

bility. The normal form theorem had given the relation between 

the primitive and general recursive functions and had provided a 

general characterization of the general recursive functions.

General means had been obtained for building partial recursive 

functions from other partial recursive functions. General 

relationships had been established between recursive and recur

sively enumerable sets. There was a basic method of reduction 

established for showing the recursive unsolvability of specific 

problems in terms of the halting problem. These basic results and 

methods were organized into a coherent theory— one which could 

stand alone as a separate field of mathematics. Subsequent work on 
recursive functions utilized this basic theory to develop more 

general and refined techniques to deal with more general and 

subtle problems of effective computability.^

71 Hartley Rogers, pp. 46-48, has a fairly complete 
classification of problems considered in the second stage of 
recursive function theory. A third stage perhaps could be 
delimited from the second stage by its concern with recursion 
on structures other than the natural numbers.
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The benefits of this work on recursive functions to the

development of computer science were already becoming apparent

during the period Turing spent at Princeton. His characterization

of the recursive functions, in terms of a machine that could do all

the computations theoretically possible by a mechanical procedure,

was particularly suggestive of the role recursive function theory

could play in the development of computing machinery. For Turing's

work not only characterized a particular class of functions in

mathematics; it also characterized the theoretical possibilities
72and limitations for actual computations by a physical machine.

In fact, it was a question of actual computation (concerning the 

zeta function) that first had led Turing to consider the more 

theoretical issues regarding computation of functions. Turing 

maintained an active interest in actual computation by physical 

machinery throughout his career.

Even as early as his student days at Princeton, Turing argued 

vociferously that computing machines could be built which would 

adequately model any mental feature of the human brain. Von 

Neumann, who, as a member of the Institute for Advanced Study, had 

an office in the same building at Princeton, was attracted to 

Turing because of their common interest in mathematical logic.

72 Turing's work also provided a characterization of the 
human mental process as it did computation. See Chapter Six 
for a detailed discussion of this point.

R eprod u ced  w ith perm ission of the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

148

Turing's view on the computer and the brain was disputed by von

Neumann, and the two discussed the issue on many occasions while
73Turing was completing his dissertation. This is purportedly 

what inspired von Neumann's interest in computing. Von Neumann 

and Turing separated when Turing returned to England, leaving 

both determined to build computers to test the possibility of 

mechanically modelling the human brain. Both were restrained from 

beginning personal computer projects by the outbreak of the war, 

but, ironically, each was provided his entree to the computer field 

on a grander scale than either could have managed individ'ially 

because of the war.
74Turing completed his Ph.D. dissertation on ordinal logics 

at Princeton in 1938, resolving certain foundational problems 

brought about by GBdel's incompleteness theorem. Von Neumann 

offered the new Ph.D. a position as his assistant at the Institute. 

Characteristically, Turing is reported to have stated that, however 

he was to begin his career, it was not to be as assistant to 

anyone— even to von Neumann. Besides, Turing was homesick for

73 In an oral interview with Rosser in April, 1979 by the 
author. The entire account of the interaction between Turing and 
von Neumann at Princeton in the 1930's is due to this discussion 
with Rosser.

74 The dissertation was published as "Systems of Logic based 
on Ordinals," Proceedings of the London Mathematical Society,
(2), 45 (1939), p. 161.
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Cambridge and for the companionship of his mother. With the 

political situation in Europe steadily worsening in 1938, Turing 

wanted to be back in England when his country declared war. Thus 

he hastily completed requirements for his Ph.D. program, which 

he finished in two years, and returned to King's College, 

Cambridge, where his fellowship was renewed.
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Chapter Three: Turing's Contributions to the Development

of Physical Computing Machinery

This chapter will concentrate on Turing's contributions to the 

development of physical computing machinery. For several reasons, 

it is a rather difficult task to assess the novelty and importance 

of hxs work and sometimes even to determine what events transpired. 

For one, many of Turing's documents related to the war effort 

remain classified— even after the twenty-five year declassification 

of documents by the British government— and there does not appear 

to be any hope that this information will be made public in the 

near future. Second, Turing was terribly disorganized in 

general, an attribute which carried over to his correspondence.

The records of his correspondence appear to be scanty and incom

plete. Third, there is no universal opinion about the importance 

of Turing's work to the development of computer science as there 

is, for example, in the case of von Neumann. Some people consider 

Turing's work to be the thoroughly impractical efforts of a 

mathematical logician who know little about engineering problems 

and design and do not give him his due. Fourth, Turing committed 

suicide during the most productive period in his career. Thus

150

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

151

he was not around to carry through his projects and ideas, nor 

did he have the time to communicate them to other people in 

computer science. Fifth, the fact that Turing was working in 

Britain reduced the effect of his work. Although there was a 

surprisingly active computer industry in Britain just after the 

war considering the state of the British economy, very quickly the 

United States took dominance over the industry. In the United 

States the plans of Eckert, Mauchly, and von Neumann held 

dominant, and very little was adopted from foreign computer 

development. Nevertheless, it is possible to patch together, from 

the fragmentary evidence, an account of the development of 

Turing’s work and to conjecture on its influence on the development 

of computer science.

Bletchley Park and Computing

In 1938, after completing his Princeton degree, Turing 

returned to Cambridge, where his fellowship at King's College 

was renewed. Not long thereafter war was declared, and Turing 

immediately volunteered. He was recruited by the British Foreign 

Office and was sent to Bletchley Park in Buckinghamshire, some 

fifty miles north of London. Bletchley Park was the center of 

British cryptological work during the war. Turing was assigned to 

one of the groups working on breaking the codes produced
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mechanically by the German military.

Most of the German mechanical code production was done with 

a machine known as Enigma. In general shape and size, the Enigma 

machine was similar to an ordinary typewriter. Like a typewriter, 

it had an alphabetic keyboard similarly situated in front.

However, Enigma had as well a plugboard on the front, a set of 

lights on top to represent the letters of the alphabet, and a set 

of three rotors in the rear— all of these connected inside by 

intricate electrical wiring. Striking a key on the ordinary 

keyboard would create an electrical contact, and an electrical 

signal would follow an extremely complicated pattern through the 

machine, through the rotors, and would eventually light up one 

of the lights (for a particular letter) on the face of the machine. 

Each time an electrical impulse would go through a rotor, the 

rotor would automatically advance through one of its twenty-six 

positions (each position providing a different electrical path). 

Furthermore, the rotors could be interchanged in position or be 

replaced by other rotors, or the plug board on the front could be 

changed to change the electrical circuit. To encode a message with 
the machine, one would set the plug board and the rotors in the 

appropriate initial position for the day (for the initial keying 

positions were changed daily) and type the message on the keyboard. 

Then another person,on a normal typewriter, could type the letters 

that appeared on the lights on the face of the machine. To decode
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a message, the machine need only be set in essentially the inverse 

position (depending on the day's key) and have the above coding 

procedure be followed.

In 1919 a Dutchman, Hugo Alexander Koch, registered a patent 

for a Geheimschrij fmachine (secret writing machine) for protecting 

industrial secrets.^ Although these plans embodied the basic idea 

of Enigma, the machine awaited practical improvements before it 

could become commercially feasible. A Berlin engineer, Dr.

Arthur Scherbius, completed these practical improvements and was 

placed on the board of directors of Chiffriermaschinen Aktien- 

gesellschaft (Cipher Machines Corporation) of Berlin, a company 

founded solely to manufacture these machines which Scherbius 

named "Enigma."^

These commercial machines, which were very similar to the later 

military versions, were well advertised. The company exhibited the 

machine before the 1923 Congress of the International Postal 

Union. The following year the company arranged for a demonstration

^ The most reliable secondary source on the war and Enigma 
seems to be R. Lewin, Ultra Goes to War. With the declassification 
of information by theBritish government after thirty years, 
beginning in 1974, a slew of bocks— mostly unreliable— deluged 
the market.

2 According to one source, the unreliable Cave Brown's 
Bodyguard of Lies, 1975, p. 14, Scherbius named the machine after 
Sir Edgar Elgar's Enigma Variations in which the composer described 
his friends in a musical cipher.
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of the machine, having the German postal office send a message

over Enigma to the International Congress. A sales pamphlet was

distributed in English, entitled, "The Glow-lamp Ciphering

and Deciphering Machine 'Enigma.' What persons is it calculated

to serve and how?" The machine was publicized in the United
3States in Radio News and was described in print by Dr.

Siegfried Turkel, scientific director of the Viennese crimin

ological institute. Besides the German patent, Scherbius 

applied for a British patent in 1927 and for another for 

improvements on the machine in Britain in 1931.
Unfortunately for Scherbius, the time was not ripe for his 

machine. World business had slackened dramatically by 1930, and 

industrial espionage using sophisticated equipment was not yet 

prevalent. Scherbius' company went bankrupt and lost the patent 

rights. However, this was not before the governments of Germany, 

Poland, Japan, and the United States had purchased models of the
4machine. In 1933, just as Hitler was coming to power, the 

commercial model was withdrawn from the market.

As early as 1926 the German military began to use a modified 

version of the Scherbius machine. Poland, sandwiched between

3 Radio News, 1923.
4 The United States bought a Scherbius' machine for about one 

hundred fifty dollars in 1927.
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powerful countries, Russia and Germany, realized its

vulnerability. It countered its relative weakness by strong

intelligence operations designed to determine what its powerful

neighbors were doing. Consequently, Poland was uneasy when the

Germans employed their new encoding device for messages which the

Poles were unable to decipher. This motivated a concerted new

effort to break the Enigma coding. Mathematics students from the

University of Poznan were recruited and provided with additional

instruction in cryptanalysis.This group worked on building a

copy of the German military version of Enigma, on a mathematical

theory for breaking its coding procedures, and on supplementary

machines to assist in the code-breaking computations. Their work

was made easier by Polish intelligence:

During this year QL928] Polish intelligence also had a 
German military Enigma in their hands for a weekend. A 
box addressed to the German Embassy in Warsaw was tact
fully removed from the Railway Parcels Custom Office one 
Friday afternoon and returned, after examination, before 
the next Monaay morning.®

The Poles were also assisted by the Intelligence Division of the

French General Staff. An officer in the German Cipher Bureau in

^ Ironically, one of the students was sent to GBttingen, the 
center of Western mathematics, to gain the mathematical background 
to break the German cede.

 ̂Quoted in Levin, op. cit., p. 30, fn., and attributed to 
Polish Colonel Lisicki.
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1932 provided the French Secret Service with documents on the 

operations and procedures of German military encoding. Included 

was a list of the settings for the Enigma machine. In turn, the 

Poles were supplied with copies of these documents. Using the 

code keys provided by the French and the messages they had 

intercepted during the previous year, the Poles were able to 

develop a mathematical technique for breaking the Enigma code.

By 1939 the Poles understood the workings of Enigma, had had 

fifteen Enigma machines built in the Ava radio equipment factory 

in Warsaw, and were regularly decoding field messages of the German 

military once again.

Unfortunately, 1939 was the year in which Poland was overrun 

by Germany. During the invasion, the members of the crypto

graphical section were secreted from the country and reestablished 

as a unit in France. However, their effectiveness in France was 

hampered severely by the oppressive authority the French military 

insisted on exerting over the Polish officers. However, afraid 

of being captured, the Poles had already presented to both the 

French and the British working models of the German military 

Enigma, plans for other related machinery, and information about 

the theory for breaking the coding procedure. As France came 

under siege as well, the responsibility for breaking Enigma lay 

with the British.

Dillwyn Knox, a brilliant Eton and King's College, Cambridge,
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man, was head of the British program to break Enigma. The Govern

ment Code and Cipher School (GC&CS) was moved from the London 

headquarters of the secret service to a small Buckinghamshire 

town, Bletchley Park, fifty miles north of London. Bletchley Park 

was chosen because it was away from the strategic bombing targets 

in London, had ample room for expansion, was linked by major 

highway and railway to London, and was convenient to Oxford and 

Cambridge, the major hunting-grounds for recruits to work at 

Bletchley Park.

The "old boy network" was used to perfection in staffing

Bletchley Park. There were already strong connections with

Cambridge through the older cryptanalysts: Knox from King's,

Welchman from Sidney Sussex, Vincent from Corpus Christi.

On a personal basis, therefore, suitable academics at 
Cambridge would be approached by friends already at BP: 
or, by private arrangement, someone would go down to one 
of the colleges to interview a mystified group of under
graduates picked out as possibles by a reliable tutor.
. . . Cambridge serves as an exact example of the word- 
of-mouth method that was employed— and perhaps 
inevitably employed— to staff Bletchley Park in 
secrecy.7

At the beginning of the war, Bletchley Park had the pick of the 

country's talent. They chose people skilled in solving abstract 

puzzles: mathematicians, classicists, translators of languages,

 ̂ Ibid., p. 56.
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chess masters. Turing was recruited personally by Knox at the 

beginning of the war to be trained as his assistant.

The British continued in the three directions first 

traversed by the Poles: the construction of additional Enigma 

machines, an elaboration of the mathematical theory for breaking 

the code, and the improvement and construction of devices for the 

actual breaking of the Enigma code. Before the details of this 

enterprise can be described, a description of Enigma and its 

operation must be provided.

There were three difficulties to overcome in breaking the

Enigma coding procedure. First, essentially a different code was

used for each letter of an Enigma coded message for, each time a

letter was struck, the rotors advanced one position, thus providing

a different permutation of the alphabet and so a different code.

This meant that the ordinary statistical distribution of letters

technique for decoding was useless until some technique was

derived for reducing an Enigma cipher into a cipher consisting of

a simple permutation of the alphabet. By 1943, each machine had

six possible rotors, with three being placed on the machine at any

one time. Thus, there were 120 possible rotor permutations. Then

each rotor had twenty-six possible positions. Many changes were

also possible through the plug-board. One worker at Bletchley
20Park estimated that there were on the order of 10 possibilities 

to check for each message! Although this cculd be done, it would
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take days or months to check all possibilities by brute force and, 

by this time, the messages no longer would be of intelligence 

significance. Thus, it is not surprising that at no time during 

the war did the Germans believe that there was any chance of the 

Allies breaking Enigma.

The work at breaking the code continued at Bletchley Park. 

Enciphered Enigma messages were intensely studied for clues. 

Attention was focused especially on Luftwaffe messages, as the 

members of the Luftwaffe tended to be more arrogant and less
gconcerned with security in their enciphering. However, an even 

more fruitful route was the improvement and development of devices 

to assist with computations in the breaking of the codes. The 

British inherited from the Poles a machine called the "bomba1* 

which they radically improved, and from which they generated a 

new series of electro-mechanical machines, known as the Robinson 

series, and finally an electronic machine known as Colossus.

The details concerning these machines as well as their exact 

functions remain secret, although a vague picture can be drawn.

The Polish bomba was significantly improved at Bletchley Park

g
Humorously, the greatest boon for the British cryptographers 

was the use of "four letter words." As part of the encoding 
procedure, the Germans were instructed to transmit four random 
letters. However, altogether too often, their "random letters" 
were four letter invectives— a fact of great utility in the 
breaking of the code.
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g
and called a "bombe." It was probably the first large, fast 

cryptanalytic machine.^ The bombe is best described as a special 

purpose electromechanical data processor. In a sense, the machines 

were like universal Turing machines which could imitate any of the 

various Enigma machines. Harold Keen, chief engineer for the 

construction of bombes for Bletchley Park, stated the function of 

the bombes

What it did was to match the electrical circuits of 
Enigma. Its secret was in the internal wiring of 
Enigma's rotors, which 'the bombe' sought to imitate.

The Polish bomba had parts of six rotors wired into it which

enabled it to imitate the permutations created by the three

q For some obscure reason, the machine was named after the 
Italian frozen dessert. A number of people at Bletchley Park 
objected to the name "bombe" on the grounds that messages might be 
intercepted by the enemy and they would confuse "bombe" with "bomb" 
so that Bletchley Park might become a target of German bombing 
raids.

^  I. J. Good, "Early Work on Computers at Bletchley,"
Annals of the History cf Computing, 1 (1979), p. 43.

^  The contract for the construction of these machines was 
given to the British Tabulating Company of Letchworth. Keen is 
quoted in Lewin, o£. cit., p. 58.
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rotors of Enigma. The bombes provided a way much faster than was

possible by the human unaided by machine "to test all the possible

wheel or rotor orders of the Enigma, all the possible wheel

settings and plug or Stecker connections to discover which of

the possible arrangements would match a prescribed combination of 
13letters." The end result would presumably be tested to deter

mine whether the code had the correct statistical distribution to

be in German, for it would be impossible for humans to examine
8each of the 3 x 10 messages. However, the fact (that made the 

Germans so confident) was that, in a reasonable time, even the 

bombe or a series of bombes was unable to test all the possibil

ities. Thus a slightly different strategy had to be used— a 
strategy partially due to Turing.

It obviously could not be sufficient merely to simulate 
the Enigma and to try all possible setups for a message, 
because no machine even now would be capable of running

There seem to be two alternative reasons why there must be 
parts of six rotors wired into the bombe. According to one view, 
it is because there are six ways in which the three rotors can be 
placed in the three positions in the machine. According to the 
other view, the way the circuits were actually constructed on the 
Enigma, the electrical impulse would go through the three rotors, 
be reflected, and return through the rotors in the reverse 
order. Thus, the rotors would provide six permutations which the 
bombe would have to imitate. All parties seem agreed that the 
bombe was unable to cope with the possibility of there being extra 
rotors which could be placed in the Eniema.

13 Ibid., p. 119.
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8 14through the 3 X 10 possible states in a reasonable
time. So there had to be some further ingenuity in the
bombe. This I cannot describe, but I can only say that
Gerdon Welchman had one of the basic ideas and Turing
another one. My impression is that Turing's idea was
one that might not have been thought of by anyone else
for a long time and it greatly increased the power of
the bombe.15

Turing's contribution to the technical improvement of the 

bombe remains a mystery. However, in the vaguest sense, the 

technique for the use of the machine is apparent. By human 

observation of the incoming coded messages, using a combination of 

mathematical theory and rule of thumb methods, a select few 

messages were chosen to be fed in part to the bombe. Since 

bombes were scarce, these "menus" to be fed to the bombes had to 

be chosen carefully because there was no a priori way of deter

mining how long the bombe would run before it would halt with a 
possible solution. Each time the machine would halt, a jubilant 

staff would manually check to see that the bombe had identified the 
appropriate coding.

Besides the bombes, Bletchley Park produced two other series 

of machines for cryptological purposes, the Robinson series and the 

Colosr.us. The work on these machines began late in 1942 when

1 4  *i n  jAlso see Good, p. 42, who estimates there to have been 
between 1 021 and 1023 possibilities to check (depending on the model;•

1:> Quoted in Lewin, pp. 58-59, from Good.
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M. E. k. Newman, joined the Bletchley Park staff and was granted

permission to open a new section for the design of new types of

cryptological machinery. Newman, who had known Turing at

Cambridge and even had collaborated with him on work in logic,^

looked to Turing for new ideas in the construction of these

machines: "Heath Robinson," Peter Robinson," and "Robinson and

C l e a v e r . T h e  machines were built by the Post Office research
18center at Dollis Hill in North London, which had extensive exper

ience with radar. The purpose of the Robinson series was rather 

different from that of the bombes.

The Robinson machines were fully automatic machines which 

electronically counted pre-programmed Boolean functions of two 

inputs. The Heath Robinson read input from two paper tapes, with

five holes across, at 2 000 characters per second (a speed still
19fast for modern readers). The tapes in this machine were driven

^  Newman was a Fellow of St. John's College, Cambridge, a 
University lecturer in mathematics and a Fellow of the Royal 
Society. He was later to sponsor Turing's entrance into the 
Royal Society and to write Turing's biographical memoir.

There machines were named after Heath Robinson, Britain's 
version of Rube Goldberg, and two London department stores, Peter 
Robinson and Robinson and Cleaver.

18 To keep the purpose of the machine secret, the machine was 
described as "Transmitter, Telegraph, Mark I" to the people 
building it.

19 Good gives these details, p. 45, about Heath Robinson.
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by sprocket holes and pulleys. The processing of the information

on the tape was accomplished by photoelectric readers and

electronic circuits, carried out by between 30 and 80 electronic

valves. Output was handled by a primitive automatic line

printer. There were difficulties keeping the quickly moving

tapes synchronized, and the actual utility of the Robinson series

during the war was slight. Their main importance was as

precursors to the Colossus machines.

This machine |Heath Robinson| had been put together with 
emphasis on speed of completion more that on reliability. 
In fact, so many things could go wrong, especially with 
the machine and tape preparation, that the success rate 
was extremely low and discouraging for some weeks, and 
the future of the Newmanry was perhaps in the balance. 
. . .  By introducing more checks into the entire system 
and also by other research carried out by Michie and my
self |I. J. Good|, the success rate was improved enough 
to show the feasibility of Newman's faith in a machine 
attack on the problem in hand. Thus fuads were made 
available for a more powerful, namely the Colossus.^®

The actual function of the Robinson and Colossus series remains

obscure. However, one writer on intelligence speculates on their 
21use. As the war progressed, the Germans worked on developing 

a new machine, the Geheimschreiber, which would render the codes 

for their strategic plans and diplomatic assessments virtually

^  Good, p. 45.
21 Lewin, op. cit., cf. pp. 129-134.
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theory, the Germans entrusted to Enigma tactical messages which 

would be out of date, they felt, by the time they could be 

broken. However, strategic and diplomatic plans were of on-going 

interest and would not be rendered useless by the time span 

necessary to decode an Enigma message. The extra security of the 

Geheimschreiber over the Enigma derived purportedly from three 

sources. First, the machine was much more rapid than Enigma, 

sending messages at a rate of about a word a second. Second, the 

machine consisted of roughly ten rotors, instead of the three 

rotors on the Enigma. Third, and perhaps most important, the 

Geheimschreiber was entirely automatic. The operator would type 

the message he wanted coded and the machine would then completely 

take over, automatically coding and transmitting the message. On 

the other end, the decoding was automatic and rapid as well. The 

security was much better because there was no chance of careless

ness on the part of the cipher clerks— carelessness which often 

assisted the breaking of these codes at Bletchley Park.

Unfortunately, the speed of the Geheimschreiber required 

speed on the part of the machines used to break Geheimschreiber.

^  The existence of the Geheimschreiber is not speculative, 
however. Two models were captured in fighting in North Africa. 
These machines were mad*, by the famous makers of telephone and 
telegraph equipment, Siemens und Halske Akt iengesellschaft.
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and the electro-mechanical Robinson machines were not fast 

enough. Thus a completely electronic machine, known as Colossus, 

was developed to match the speed of the Geheimschreiber. The 

project was jointly assumed by Bletchley Park, and Dollis Hill.

It was T. H. Flowers, head of the switching group at the Post 

Office's Dollis Hill research Station in North London, who 

suggested that in Colossus electromagnetic relays be replaced by. 

fifteen hundred electronic tubes. The electronic complexity of 

such an undertaking was so overwhelming that no one at Bletchley 

Park would authorize the project; so Flowers had to go to the 

Director at Dollis Hill for authorization. The work at 

Bletchley Park on the machine came under Newman's group, as many 

of the features of the Robinson machines were incorporated into 

the Colossus design. Turing was available to Newman in an advisory 

capacity as he had been for the Robinson series. In the short 

span of eleven months the first Colossus was built and was in 

operation by December 1943. A number of others were completed for 

use, with an increase in power to 2400 tubes by June 1944 for 
use on D-Day.

23According to Randall, the chief historian of the subject, 

the Colossus incorporated the following technical features: 1500

23 Brian Randell,"Colossus: Godfather of the Commit er,"
New Scientist 73, (10 Feb. 77), pp. 346-348.

R eprod u ced  w ith perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

167

tubes (more than twice as many as most of the early post-war 

computers), operation in parallel arithmetic mode at 5000 pulses 

per second, paper tape inputs moving at more than 5000 characters 

per second, electronic counting circuits, binary arithmetic and 

Boolean logic operations, "electronic storage registers changable 

by an automatically controlled sequence of operations," conditional 

(branching) logic, "logic functions pre-set by patch panels or 

switches, or conditionally selected by telephone relays," and 

typewriter outputs.

Flowers,the main engineering designer of Colossus, solved the

problem of tape alignment that had plagued the Robinson machines

by replacing some electro-mechanical operations by fully electronic

ones— thus moving one step closer to the fully electronic machine.

Flowers* idea was to bypass the tape alignment problem 
entirely by dispensing with one of the input tapes, and 
instead generating some of the input data electronically 
within the machine. Means therefore had to be provided 
for generating the required sets of data from parameters 
stored on rings of gas-filled thyratron triode valves. 
This was done by incorporating plugboards and sets of 
switches into the machine similar to those which were 
used in an earlier electromechanical device for preparing 
input tapes for the Heath Robinson.24

However, by resorting more to pure electronics and thereby 

increasing the number of tubes (to 1500), probably the largest 

number used in any machine up until that time, a difficult

^  Randall, p. 347.
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problem arose over reliability. Flowers worked out a design, so 

that switching circuit networks with even a large number of tubes 

could be made reliable. The design involved: leaving the equipment

on permanently to avoid the power surge when the tubes were turned 

on (a main cause of their blowing out); use of a clock pulse to 

synchronise and time operations so as to eliminate cumulative 

timing errors within such a large machine; and use of binary 

tube circuitry on a large scale by having all tubes (other than in 

the tape reader photo cell amplifier) operate at either zero 

voltage (to represent binary digit 0 ) or above a minimal voltage 

level (to represent 1), rather than operate at a continuous range 

of voltages.

Later versions of Colossus were five times as fast as the 

original model, mainly due to the use of shift registers (tempor

ary memory storage) which allowed a degree of parallel processing. 
The later versions had other additional facilities, and the number 

of tubes grew to 2400.

Randall provided an assessment of the Colossus as a precursor

of the modem electronic digital computer:

A proper assessment of the Colossi as precursors to the 
modern general purpose electronic digital computer is 
hampered by the lack of detailed information concerning 
the functions they performed, and the facilities that 
were provided for controlling their operations. However, 
the official release, and statements made by the designers 
and users, made it seem quite fair to classify the 
Colossus as a special purpose computer, with at least a 
limited form of "conditional branching" within programs.
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It was, however, externally programmed; and there is no 
question of it being an actual stored program computer. 
This final step in the invention of the modern computer 
had to await the development of a practical high-speed 
memory capable of holding a large number of binary digits. 
The only variable stores on the Colossus were gas tubes 
and hard valve trigger c i r c u i t s . 25

Randall pointed out as well that the only other computer of 

the period comparable to Colossus was the ENIAC, since they were 

the only two electronic programmable computers. It was reasonable 

only to compare electronic computers since they provide roughly 

one thousand fold increase in speed over their electromechanical 

predecessors. ENIAC, although begun in 1943, was not completed 

until 1946. However, it was a much more powerful machine than 

Colossus, contained 18,000 tubes, and had other features similar to 

Colossus. Neither machine was general purpose, although ENIAC*s 

specialization to numerical calculations (for ballistical 

trajectories) was certainly more generalized than Colossus'
specialization to compute certain types of Boolean functions.

26Good pointed out, however, that Colossus had more general 

purpose capabilities than the special ways in which it was used 

because ordinary calculations could be expressed in Boolean 

terms. As evidence of this, he mentioned that Colossus could 

carry out base 10 multiplication. ENIAC was a core important

25 Randall, p. 348.

26 Good, p. 46.
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development in the history of the computer since it was a direct 

predecessor of the modern electronic digital computer, leading to 

a genealogy including EDVAC, the Institute for Advanced Study 

computer, and a large number of commercial computers. However, 

the importance of Colossus as a training project for the computer 

scientists of Britain can not be overstated. From the Colossus 

project, Newman and several of his workers went to Manchester to 

work on MADAM, Turing went to NPL to work on ACE, and Coombs and 

Chandler remained at Dollis Hill to design the MOSAIC computer.

This accounted for much of the early post-war computer activity 

in Britain.

It is much harder to assess Turing's role at Bletchley Park 

than to describe generally what work was accomplished there.

Turing was recruited originally by Knox and groomed as his assistant 

for a leadership position. At first, Turing was delegated head of 

Hut 8 , which worked on decoding German naval-messages through the 

use of the bombe. The hope was to cut down on heavy British ship 

losses in the North Atlantic due to U-boat attacks. His mathe

matical knowledge of computing theory and his knack for constructing 

powerful machinery from available paraphrenalia also made him an 

invaluable member of the teams actually constructing the bombes, 

Robinson machines, and Colossus. Newman, the head of these 

projects at Bletchley Park, was a colleague of Turing's at 

Cambridge and was said to have been inspired by Turing's work on
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computable numbers. Newman provided Turing with the opportunity to 

work on the actual construction of the Robinson series and included 

Turing among those in determining the features to be included in 

the Colossus. Turing was only one of many figures involved and, 

at least in the case of Colossus, his importance in the actual 

construction of the project seems to have been overshadowed by the 

work of others.
Turing had other responsibilities beside working on the 

construction of the cryptanalytic machines. He was purportedly 

::ent to classified conferences in the United States in late 1942 

to explain the workings of the Bletchley Park machines end to gain 

information on the progress of the similar American operations, 

which were being carried out under the code-name "Magic."

I. J. Good, a co-worker of Turing at Bletchley, believes thst 

Turing may have discussed the atomic bomb on his American trip:

I believe that on his trip to the United States,
Turing may have discussed the atom bomb, because soon 
after he returned he mentioned a problem concerning 
branching theory and made it clear that he could not 
refer to the application. The problem was related to a 
number of barrels of gunpowder placed at the points of a 
two-dimensional lattice. The question was, if one of the 
barrels exploded what was the probability that the 
explosion would die out on an infinite two-dimensional
lattice.27

When Turing returned from America, he was relieved of the 

administration of Hut 8 . At about the same time, in 1943,

27 Good, p. 42.
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Dilwyn Knox died, and Turing assumed some of his cryptanalytic and 

administrative responsibilities. However, after being relieved of 

the direct responsibility for Hut 8 , Turing was generally more 

free to spend time on theoretical research involving the coding 

problems and the mechanical decoding equipment.

It is hard to determine exactly what Turing's contributions
28were to the military computing machinery at Bletchley Park. As 

stated above, much of the material remains classified. Besides, 

these were group projects, and it is somewhat difficult to untangle 

individual contributions. One might get the impression that Turing 

was mainly a consultant at Bletchley Park. For example, the 

Bombes originated with the Polish cryptanalysts, and the Robinson 

and Colossus machines originated from the group working with 

M. H. A. Newman. Such a view is probably misleading. There were 

significant improvements in the British version of the bombe, and 

there is reason to believe the similarities to the Polish bomba 

were not as great as the similarity of names suggests. Besides, 

Turing's high level position at Bletchley suggests that he was 

among the most valued of consultants. Newman admits that his 

machines were inspired by the machines in Turing's computable

28 Certainly more would be known if the author had had access 
to the following papers: Brian Randell, The Colossus. Report
No. 90, Computing Laboratory, University of Newcastle upon Tyne 
(June 1976), and I. J-. Good's article on computing machinery at 
Bletchley Park forthcoming in the first issue of the Annals of 
the History of Computing.
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number paper, although, he does not explicitly state what he took 

from Turing's paper. Perhaps it was the resemblance between the 

bombes and Colossus and the universal Turing machine in that one 

of their tasks was to mimic other machines. This meant that the 

logical design of the universal Turing machine could be used as 

the starting point for the logical design of the Bletchley 

machines— although no evidence is available that directly 

verifies that it was used in this way.

If it is unclear what effect Turing had on the development of 

the Bletchley Park machines, it is easier to conjecture what 

benefits accrued to Turing from his wartime experiences:

Cl) Experience in practical electronics.
For the typica; Cambridge graduate not majoring in physics, his 

education in physics consisted of school physics and some theoreti

cal work in mathematical physics, but did not include any 

experimental or practical work of the type important in designing 

electronic machines. This was experience Turing was to gain while 

at Bletchley Park and to use so productively in his design of 

ACE.

(2) Experience working on actual engineering design problems 

rather than just on theoretical machines.

Turing developed a great deal of theory about the logical design 

and programming of computing machinery in his 1936 paper, but his 

concern with practical considerations such as reliability,
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durability, and especially speed of computation were the result of 

his wartime experiences.
(3) Further time to examine the possibilities of â physical 

computing machine.

Turing had intended to pursue the construction of a physical 

computing machine when the war intervened. Later in the war 

Turing was relieved of some of the pressure of day-to-day code 

breaking and allowed to work more on research-oriented problems. 

The working of the powerful computing machines at hand gave 

Turing a chance to compare the workings of physical machines with 

his theoretical machines.

(4) Contact with engineers and mathematicians interested in 

problems of computers.

Up until this time there is no evidence that Turing had discussed 

computing and computing machines other than with a few logicians, 

mainly at Princeton (most notably von Neumann), and perhaps with 

a few people at Cambridge when he started to build his "zeta" 

machine. Bletchley Park provided Turing with the acquaintances 

among whom were many of his future colleagues.

(5) An antrd to _a position with capital where he could 

actually design and construct his own machine.

Ironically, although the war preempted Turing's attempt to con

struct a computer at the completion of his Princeton degree, the 
war also provided Turing with the contacts and experience to
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secure the position at the National Physical Laboratory after the 

war. It is unclear whether Turing would have found someone to 

provide the substantial financial backing necessary for the 

construction of a computer had the war not intervened. For then 

Turing would have sought the support directly after the Princeton 

Ph.D. without any practical experience and without the knowledge 

from the war that such machines could be built.

Computing at the National Physical Laboratory

At the end of the war Turing was offered a lectureship in 

mathematics at Cambridge. Surprisingly, for a man who so loved 

Cambridge, he refused it. His activities at Bletchley Park had 

provided him experience with electronics and special purpose 

computing devices and had whetted his appetite for building a 

universal electronic computer. As the war concluded, Turing 

sought positions where he could be responsible for the actual 

design and construction of a.computer. With private enterprise 

not yet involved in the computer industry, there were only four 

places to seek computer employment in Britain: the Cambridge

Computing Laboratory, the National Physical Laboratory, the 

University of Manchester, and Birkbeck College, London.

Presumably, Turing's first choice was the newly founded 

computing laboratory at Cambridge, for he was most comfortable in
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academic environments and had many friends remaining in or returning

to Cambridge. Cambridge had already had experience with mechanical

devices, in particular with a differential analyzer, so they had

decided to use the existing war technology in electronics,

mainly from developments in radar, to develop an electronic

calculating device. In the final decision on a director for the

laboratory, Maurice Wilkes, another Cambridge man who had a

distinguished war career in radar, was chosen over Turing.

Although part of the reason for this choice is undoubtedly due to

Wilkes1 experience with radar and delay lines, it has been sug- 
29gested that Turing was not chosen because of psychological 

problems that had surfaced during the war and because of his 

stubborn insistence to design machines in a way inconsistent with 

the history and aims of the Cambridge laboratory. In any event, 
Wilkes was chosen to direct the activities that led to the 

construction of the EDSAC computer.

M. H. A. Newman was hired immediately after the war to 

develop a computer (which Turing was later to program) at the 

University of Manchester. Presumably, Newman intended to continue 

the design of machines based on his work at Bletchley Park on the 

Robinson and Colossus series. Similarly, Professor A. Booth

29 See R. Malik, And Tomorrow the World.
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was given control of the project at Birkbeck College of the 

University of London. Since Turing desired a position where he 

would have control over both the design and the construction of a 

machine, neither Manchester nor London was an appropriate position 

for him at the time.

The Mathematical Division of the National Physical Laboratory 

was established in 1945 to coordinate the scientific computing 

activities that had developed during various military projects 

throughout the war. The charter called for coordination, research,, 

and development in numerical mathematics and computing equipment.

J. R. Womersley was made Superintendent of the Division. Divisions 

were formed for desk computing, statistics, punch cards, differ

ential analysers, and electronic computing. Upon recommendation 

of M. H. A. Newman, a logician and colleague of Turing at 

Cambridge before the war and the man responsible for the Heath 
Robinson series of machines at Bletchley Park, Turing was given 

the position of director of the electronic computer section 
at NPL.

As other members of the Mathematics Section at NPL were 

involved in their own projects, Turing was left entirely on his 

own to design an electronic computing machine. Ac the advice of 

Womersley, the machine Turing designed was named Automatic 

Computing Engine (ACE) in recognition of Babbage's seminal work 
on an Analytic Engine. While Turing was in the process of
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writing a preliminary proposal for ACE, he received an advanced

copy of von Neumann1s famous report on the logical design for

EDVAC. Upon receiving von Neumann's report,

. . . being Turing, his immediate reaction was to rethink
the proposed design and draft his own version. It was
eventually to be a most ambitious version, for Turing's 
principle was that anything anyone in this field could 
do, he could do better. Thus, for instance, where the 
EDVAC design had fifty storage delay lines, the Turing 
design proposed five h u n d r e d . 30

31After a few months, Turing submitted a detailed proposal to the

Executive Committee of NPL for the construction of ACE which was

duly accepted.

Turing continued to develop his ideas in isolation and was

just completing Version V of ACE when he was given his first

assistant, for in May 1946 J. H. Wilkinson was assigned to work

half time for Turing and half time in the desk computing section.
32In late 1946 and 1947 a number of people were added to the ACE

project. Their task was to assist Turing in developing "the

logical design of the ACE in the light of experience gained in

trying to program the basic procedures in mathematical eomputa- 
33tion." With the help of these people, Version V was abandoned,

30 Ibid., p. 26.
31 "Proposal for the Development of an Electronic Computer," 

National Physical Laboratory Report Com Sci 57, 1972.
32 M. Woodgar, D. W. Davies, B. Curtis, and J. H. Norton.
33 J. H. Wilkinson, "The Pilot Ace at the National Physical 

Laboratory," p. 337.
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Versions VI and VII, which included new addressing systems, 

were designed, and a great deal of detailed coding was done 

between 1946 and 1948.

The original decision, made in 1945, was to subcontract the

actual construction of the hardware to some other government

department. For about a year Turing kept in touch with former

wartime colleagues at the Post Office Research Station at Dollis

Hill who had been involved with radar and the "bombes" during the

war, intent on having them apply their electronic experience to

the actual construction of ACE. However, there was concern among

the ACE staff that they would get either disinterested performance

or an attempt to take over their project if the actual construction
34were farmed out to another agency. So, finally, in 1947, the 

policy of farming out the construction was abandoned and plans 

were made for construction within NPL. A new Electronics 

Section was established under the auspices of the Radio Division 

of NPL, and H. A. Thomas was hired to direct the section. Most 

of the personnel assigned to the Electronics Section were trans

ferred in from other sections of NPL. Although most of these 

transferees had some experience with electronics, almost all had 

to gain specific experience of pulse techniques on the job itself.

3 4
This was certainly Wilkinson's view. See Ibid., p. 3 3 7.
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Unfortunately, Turing had trouble cooperating with his 

staff. The head of the Section, Thomas, was "an energetic man, 

but unfortunately his chief interest was in industrial elec

tronics rather than in the construction of an electronic com- 
35puter." From the date of his hiring, it was apparent that 

Thomas had nothing in common with Turing and that fruitful 

collaboration between them was not to be expected. It is hard to 

classify a man as idiosyncratic as Turing. However, the conflict 

amounted for the most part to the differences in methodology and 

outlook between an academic scientist and an industrial engineer. 

The situation was further exacerbated by the cool relations

between Turing and H. D. Huskey. Earlier in 1947, H. D. Huskey
36had joined the ACE Section for a sabbatical year. Huskey, who 

had worked on ENIAC and was thoroughly knowledgable of electronics, 

was a valuable member of the group. It was apparent that Turing 

was not happy with the intrusion of an outsider interfering with 

the construction of his machine. Huskey did nothing to ingratiate 

himself with Turing, by making it known from the beginning that he 

believed Turing*s plan for outside construction of the hardware 

mistaken and by actively campaigning for construction within NPL 
itself.

Huskey, who worked well with the other members of the ACE

35 ,. ..Ibid-. P. 337.
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team, convinced the members of the Mathematics Section to build a 

pilot machine based, for simplicity, on Version V. This machine 

was known as "The Test Assembly." Turing, disillusioned with 

developments at NPL, asked for and was granted a sabbatical for 

the 1947-48 academic year to return to King's College, Cambridge, 

where he remained a fellow. Meanwhile, Thomas, apparently jealous 

of the work on Test Assembly, had Womersley rule that all actual 

construction should be left to the Electronics Section.

With the Test Assembly project denied, with Huskey disil

lusioned at the progress as his year at NPL ran out, and with 

Turing off at Cambridge unenthusiastic about the developments on 

his pet project, the Mathematics Section reached emotional nadir 

late in 1947. This was followed in 1948 by a series of departures 

from NPL and a subsequent regrouping which perhaps was what 

saved the ACE project. At the end of 1947, Huskey's sabbatical 

ended, necessitating his departure from NPL. Thomas decided to 

take a position in industrial electronics and was replaced by the 
more cooperative F. N. Colebrook as head of the Electronics 

Section. Turing returned in May, 1948, from Cambridge but, 

remaining disillusioned over the state of his project, quit to 

join the group building a powerful electronic computer at 

Manchester under the general direction of his Cambridge and 

wartime friend. M. H. A. Newman.

Despite these departures, work continued on an electronic
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computer at NPL. Colebrook, the new Electronics Section head, 

persuaded Womersley to allow the members of the Mathematics 

Section who had worked on the Test Assembly to work jointly with 

the Electronics Section to build a machine. Early in 1949, 

detailed design for the Pilot ACE— as the machine was to be 

called— began, using the basic design in Turing's most finished 
version (V) for the ACE. Assembly of the machine began in the 

Fall of 1949, and the machine was successfully operated for the 

first time in May, 1950.

ACE is perhaps the most important physical machine in 

Turing's career, for it was his sole attempt to develop logically, 

from first principles, a physical computing machine. When 

discussing the ACE project, care must be taken to distinguish 

between the various plans for the machine (five plans by Turing 

and two more in conjunction with others), the Pilot ACE, DEUCE, 

the full-scale ACE, and the various minor additions and changes to 

these versions made along the way. Although all of these plans 

share a number of features, Pilot ACE varies from the others in 

that it was built with minimal features so as to minimize cost and 

time and was intended originally only as a model for the full- 

scale machine. DEUCE varied from the other machines in that it 

was designed for specific commercial uses, and its features and 

capabilities reflect this. Although it was closely modelled on 

Pilot ACE, its hardware was refined over a long period of time
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before being constructed— a delay which Turing always feared.

Turing designed ACE to be a very large computer with 

ultrasonic, mercury delay line storage. The proposed delay lines 

were the kind developed for radar during the war, in which both 

numbers and instructions could be recorded as a series of sound 

pulses in a trough of mercury. When the wave reached the end of 

the trough, it was electronically recycled to the beginning.

There were to be 200 delay lines holding 6400 thirty-two digit 

words. Many features of Turing's proposal were similar to, and 

possibly taken from, the early design of EDVAC. Both machines 

were to be serial and binary. Memory location was similar in 

the two machines, with information being located in both by 

specifying both the address of the delay line and the position of 

the word in the line. Probably because of his experience at 

Bletchley Park, Turing used Hollerith punched cards for input and 

output. The processor was organized around temporary storage 

registers, some used for arithmetical operations and others used 

only for temporary storage. Arithmetic was effected by including 

adding circuits in the recirculation paths of certain of the delay 

lines. Control was effected by a control circuit which would pass

36 See Wilkinson for details.
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37on encoded instructions to flip-flop tubes which would then 

temporarily retain the information in static form until all the 

requisite switching operations could be accomplished. Turing1s 

plans included a highly original code. In order to increase 

speed of computation, the plans replaced a central accumulator by 

instructions which called information from a specific source 

location and guided it after processing to a specific destination—  

in effect a sophisticated addressing system. Each version of ACE 

included plans for a detailed set of logical operations. Perhaps 

most original in the logical design were plans for a rotator, a 

circuit underlying the idea of the modern parallel shifting 

network.

The NPL staff decided to build a Pilot ACE as a model of the 

full-scale ACE. By modelling the function of the machine with 

pencil and paper (similar to the way in which the Turing machines 

were designed to operate), the staff decided on the features for 

such a skeletal machine. The main store was to consist of mercury 

delay lines which held 300 words of thirty-two binary digits each. 

The design included punched cards for input and output, an auto

matic multiplier capable of operating at a rate of two milliseconds,

37 Flip-flop tubes were tubes stable in either of two positions 
and which could be changed form one position to the other by an 
electrical impulse.
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machine operation with digit repetition rate of one megacycle,

and arithmetical operations carried out at a rate of sixteen per

millisecond. As an afterthought, Wilkinson developed a multiplier

which turned this test model into a valuable computing device

which, in actuality, was so used for a number of years. In 1954,

after Turing had gone to Manchester, the store was improved by the
38introduction of a magnetic drum of thirty-two tracks (and soon 

replaced by one with 128 tracks). Pilot ACE served faithfully 

until 1956, when it was dismantled and donated to the Science 

Museum in South Kensington.

The Pilot ACE was originally intended as an experimental 

machine built only to test the design of the ACE computer. A 

full-scale ACE was planned from the beginning. However, the 

utility of the Pilot ACE and the DEUCE delayed the construction 

of the full-scale machine. The British government felt the need 

to keep its only electronic computer in operation, so once 

initial testing procedures were completed, and automatic 

multiplier and an improved control unit were added, the Pilot 

ACE was drafted for regular government service. In fact, for 

several years, Pilot ACE was the most important computer in

38 It is unclear whether Turing had a role in the transfer of 
technological improvement from Manchester to his pet project at 
NPL. The drums used at NPL were tested and constructed at NPL 
itself however.
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Britain since it was faster than its rivals and was used as a 

finished machine rather than as a test model for a number of 

important computing projects.

Meanwhile, the English Electric Company became interested in 

electronic computers, and a small contingent was sent to NPL to 

study Pilot ACE. In 1951, after three years of association with 

the ACE project, English Electric Company decided to build an 

engineered version of the Pilot ACE, called DEUCE. The design 

was completed in 1953. It included a larger magnetic drum 

(256 tracks), an additional automatic divider, and additional 

short delay lines. The earliest DEUCE machines were completed in 

1955, and NPL received one that year. Many were sold to large 

industrial companies, particularly aircraft manufacturers.

Although DEUCE was used primarily for industrial work, pure
39scientific research was also carried out on these machines.

In designing the Pilot ACE, the objective was to construct a 

machine capable of solving eight simultaneous linear equations.

The first program was operated on Pilot ACE in May, 1950. By 

the end of the year the group was confident enough to present a 

demonstration to the press. This demonstration included using two

39 M. Woodger, "The History and Present Use of Digital 
Computers at the National Physical Laboratory," p. 443. 
mentions as an example Dr. J. S. Rollett of Oxford University 
and his work on X-ray crystalography.
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long delay lines to trace the passage of rays through a compound 

optical lens. Soon the mathematical capabilities were being tested. 

Among the earliest of these tests were programs for the qua- 

drature of l/(l+x ) by Simpson's rule, integration of Bessel's 

equation, prime factorization of large integers. Subroutine 

programs were written for addition, multiplication, and square 

roots because, according to Turing's plans, only logical and not 

arithmetical operations were wired into the machine. During 

1931 a program for solving simultaneous linear equations was 

devised. By June of that year the machine had shown its utility 

by solving a system of seventeen linear equations in a few hours—  

a feat that rivalled any alternative computing method. By the 

end of the year Pilot ACE had demonstrated the expected superior

ity of digital over analog computing devices in terms of accuracy 

when a program was written which could caluclata e to 306 

decimal places.

The real strength of Pilot ACE was its facility in solving
40problems in numerical linear algebra. The machine could easily 

find solutions to simultaneous systems of linear equations, 

invert and multiply matrices, and find latent roots and vectors

40 Some of the results can be found in J. H. Wilkinson,
Progress Report on the Automatic Computing Engine," Divisional 
Report, NPL, MA/ 17/ 1024, April 1948.
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of matrices. These techniques were used on bomb trajectories, 

aircraft flutter calculations, reduction of aircraft survey data, 

calculating pressure distributions on aircraft wings, determining 

scattering of atomic particles, and in calculations in hydro

dynamics and geomagnetism. Pilot ACE was also used to do a 

certain amount of pure scientific research. For example, it was 

used to find and approximate zeroes of Lam£ polynomials.

The Pilot ACE was so heavily used for numerical linear 

algebra problems for two reasons. First, the programming was 

being carried out by members of NPL's Mathematical Division, which 

specialized in numerical ayalysis. Thus, they used their standard 

tools, various techniques of finite differences and matrix 

manipulations, and transferred them to the computer in a natural 

way when it was available. Second, and more important of the 

two reasons, Pilot ACE was well adapted to do such calculations.
IN fact, Pilot ACE was the best adapted computer at the time for 

numerical linear algebraic problems. The punched card input/ 
output system and the rapid card reader seemed to be the decisive 

features. For example, to multiply a matrix by a vector, one 

would first place the vector in the stores of the machine and the 

rows of the matrix on punched cards. The cards could be read at 

full speed through the machine and, between cards, the machine 

would have time to do the arithmetic necessary to calculate the 

entry in the resultant vector. Thus, such a computation could be
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carried out as rapidly as the card reader could read— 600 cards 

per minute. This was faster than either SEAC or EDSAC could do 

the computations— Pilot ACErs only rivals in such enterprises.

In fact Pilot ACE's facility in solving numerical linear 

algebra problems determined to some extent the demand for this 

facility. The programmers of Pilot ACE tried to reduce every 

problem to a matrix calculation. The effect was powerful tech

niques within a limited range of programming. This was appealing 

. to the users of the machines, especially the aircraft industry 

which was among the first to utilize the facility, for it meant 

less new programming to go wrong and a quicker return of solutions 

to their problems.

As early as 1946 there were detailed plans for a full-scale 

ACE. Although plans were to be modified in light of experience 

with Pilot ACE, certain features had already been determined for 

the full-scale model: it would have a sophisticated addressing
system, a large number of delay lines as its rapid access store, 

and punch card equipment for input and output. Nothing more was 

done towards designing a full-scale ACE until 1953 when testing 

was carried out on a design for delay line circuits. Over the 

next several years this and other design work slowly built up. By 

1956 decisions had been made on the instruction coding and addres

sing system and the electronics that went into its design. 

Decisions were also ?iade on the input nad output equipment, which
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was to include a fast card reader capable of reading 600 cards per 

minute, two broadside card readers, and a card punch. Word 

length was to be forty-eight digits with a digit repetition rate 
of one and one-half megacycles. The machine was quite a bit 

more powerful than its already existing commercial brother,

DEUCE. ACE had a more elaborate instruction code, allowing it to 

provide a wider range of facilities than DEUCE. Instructions were 

carried out at thirty-two per second— twice the rate of DEUCE. 

Addressing was improved. ACE was able to transfer data simul

taneously from all four drums to the delay lines in a few milli

seconds. All of this contributed to the better than four-fold 

increase in speed of ACE over DEUCE. Despite this fact, many 

computer scientists feel that the full-scale ACE was a mistake, 

having already been outstripped by other computing machinery.

It is easier to assess the importance to the development of 

computer science of Turing's work at NPL than at Bletchley. 

Turing's greatest contribution to computer science is his 

development of the art of programming. It is not unfair to say 

that with ACE, Turing established many principles that are used 
even today in programming. The stress in Turing's ACE report^

41 '*pr0p0sais fQr Development in the Mathematics Division of 
an Automatic Computing Engine (ACE)," Turing (1945), report before 
the Executive Committee of NPL, 19 March 1946.
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was on the software development. The report discussed at length 

how programs were to be written and processed. Turing viewed 

the machine as being designed for obeying programs (although these 

programs do involve numerical computation), rather than exclu-
/ Osively as machines to perform numerical calculations. Thus 

Turing proposed to use ACE to play chess, for example, as well 

as to compute solutions to a system of equations. This interest 

in programming had begun with the 1936 paper, and the continuity 

of thought is apparent in the ACE report, where he tried to show 

how the programming developed for Turing machines could be 

adapted to actual physical machines.

Turing1s view that a computer is a machine for carrying 

out programs and not just for numerical computations led him 

to design a computer which, for the first time, required serious 

consideration of software and which consequently led to the 

development of a number of novel features which new are in 
standard use.

(1) Turing's ACE report provided the first complete design of 

a stored program computer architecture, for Turing allowed

42 Von Neumann, like most others, holds the narrower view of 
the purpose of the computer. Because of this, in the EDVAC 
report Von Neumann concentrates almost exclusively upon the way in 
which arithmetical operations are to be carried out. This point 
and most of the others in this section, on programming have been 
made in either Carpenter and Doran, "The Other Turing Machine," or 
in Wilkinson, "The Pilot ACE at the National Physical Laboratory."
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Instructions to be encoded as numbers and thereby to be stored in
43the memory just like other data. Both von Neumann and 

Eckert had proposed that programs be stored, but Turing was the 

first to work out all the details.

(2) Turing held an essentially modem view on access to

variables and treated memory in a modem fashion as a random
44access addressable device. For example, to Turing, branch

45instructions merely specified the number of the next instruction.

(3) Turing included a simple, straightforward type of
46conditional branching in his proposal for ACE. For example,

43 The 'idea of encoding instructions as numbers is an old 
idea. However, without question, Turing was led to this idea by 
GBdel's incompleteness theorem in which the sentences of a formal 
language are encoded in the integers in order that they can be 
processed. In the 1936 paper Turing calls his programs "tables" 
(because he listed the steps of the programs in tabular form). 
Incidentally, von Neumann was the first after Turing's 1936 
paper to describe the stored program concept in any detail.

44 Von Neumann only arrives at this idea later, some time in 
1946. In the first draft of the EDVAC report, von Neumann speaks 
of "transient transfers" where "the place of the minor cycle 
which contained the transfer order must be remenbered" (quoted 
in Carpenter and Doran, 0£. cit., p. 270).

45 Von Neumann considers branch instructions as orders from 
control to transfer from one connection in the memory to another.

46 Contrast Turing with von Neumann, who employed an 
instruction to select, on s. certain condition, one of two numbers 
which was then- stored into the address field of an unconditional 
branch.
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when Turing wanted to include the branching instruction 

Do instruction 10 if a * 0 , , ,it ,t 20 if a = 1 ’ would consider instructions

1 0 and 20 as encoded digits and write the conditional branching as

the calculation (A x Code for Instr. 10) + (1 - A) x Code for 
47Instruction 20.

(4) Turing also provided ACE with the capability of program

modification. He allowed for the modification of addresses of
48instructions as the machine executed. He also allowed for the

49manipulation of instructions as if they were numbers. Finally,

47 This is the technique of characteristic functions that 
was used by the recursion theorists to apply recursive functions 
to sets and propositions. Without doubt, this is where Turing 
found the idea.

48 In the draft report von Neumann distinguished instructions 
and data by a one-bit tag. Only addressed could be modified. This 
was the only means of conditional branching or array indexing 
discussed in the draft report.

49 Turing uses this technique as the basis of his conditional 
branching. Von Neumann discusses no such technique in his draft 
report.
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he provided for the possibility of one program processing another

— treating it as data.^®

(5) Turing developed a control processer with a novel address

register and optimal coding procedure. To increase speed of

computation, Turing introduced "optimal coding," where consecutive

instructions were stored in relative positions which would allow

one instruction to emerge from the delay line just as the previous

instruction was completed.^ Also to increase speed of operation,

the usual central processer was replaced by a series of temporary

storage registers and a novel address register whereby each

instruction represented a transfer of information from a source to
52a destination. This addressing system, which was due to

This follows from his idea of a universal machine in the 
1936 paper, where he explicitly mentions how the standard 
description number of a machine is put in the universal machine. 
Although the ability of one program to process another is thought 
of as a fundamental characteristic of von Neumann:s machine, it was 
suggested independently— and possibly originally— by Turing. Since 
von Neumann gave each word a non-overrideable tag, he could not 
manipulate instructions so as to allow one program to process 
another.

^  This provided a significant improvement over consecutive 
storage of instructions. According to Wilkinson, op. cit., 
p. 336, Turing was obsessed with the speed of operation of his 
machines. Optimal coding turned out to be very untidy, but also 
quite powerful. One of its greatest triumphs was the early 
development of double and triple precision floating point 
programming and the subsequent development of floating point error 
analysis. The use of optimal coding was quite controversial at the 
time.

52 More about this addressing system can be found in 
Wilkinson, op. cit., p. 337.
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Wilkinson and the rest of Turing's group, replaced the addressing 

schema
A -»■ Processor, B Processor, Arithmetical operation,

Processor -► C

by the addressing schema

A Arithmetical Operation B C, next instruction D.

(6 ) Turing fully developed tha art of subroutine programming,

which had been used in a primitive way in earlier relay machines.

He conceived of instructions as components of basic operations and

consequently wrote programs making extensive use of subroutines.
53A number of subroutines were explicitly written. Turing looked 

forward to a computer holding an extensive library of subroutines 

stored as machine instructions with symbolic addresses. Turing 

even tackled the difficulties inherent in calling up subroutines 

at various stages in a program, resulting in the design of a

53 Included in the report were the following subroutines: 
Label Task

INDEXIN
PLUSIND
MULTIP
ADD
TRANS45
BURY
UNBURY
DISCRIM

BINDEC

Add a work with a certain address to the register, 
add one to the register.
Perform multiplication.
Perform addition.
Transfer
Save the return address of the next subroutine branch, 
retrieve the last saved address and branch to it. 
Depending on the output of the logic unit, transfer one 
of two storages to a particular address.
Transfer number in accumulator to output buffer which 
converts it to binary words, which in turn punches a 
card which gives a decimal representation of the number 
in a Hollerith code.
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software stack for subroutine linkage (the modern concepts of 
54PUSH and POP). He also showed how to externally link-edit 

subroutines rather than use the slower approach of loading each 

subroutine at a fixed address.

(7) Turing was among the first computer scientists to call

for precise program documentation.

In addition to these we. must recognise the 'general 
description* of a table. This will contain a full 
description of the process carried out by the machine 
acting under orders from this table. It will tell us 
where the quantities or expressions to be operated 
on are to be stored before the operation begins, 
where the results are to be found when it is over and 
what is the relation between them. It will also tell 
us other important information of a rather dryer kind, 
such as the storages that must be left vacant before the 
operation begins, those that will get cleared or 
otherwise altered in the process, what checks will be 
made, and how various possible different outcomes of 
the process are to be distinguished. It is intended 
chat when we are trying to understand a table all the 
information that is needed about the subsidiaries 
to it should be obtainable from their general 
descriptions.55

That Turing was concerned with precise program documentation does 

not seem surprising, for the idea is apparently an extension of his 

notion of standard descriptions for Turing machines put forth in 

his 1936 paper. The purpose of these standard descriptions was

54 Turing used the terms "BURY" and "UNBURY" for "PUSH" and 
"POP", respectively.

^  From Turing's proposal for ACE, p. 29, as quoted in 
Carpenter and Doran, oj>. cit., p, 272,
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to provide a precise formal characterization of informally defined 

functions. Thus it is not surprising that the logician Turing was 

concerned about the formalities of the actual programs for ACE as 

well as for the idealized programs for Turing machines. Other 

computer scientists, not in logic, were not so fussy about the 

formalities of writing down that the programs worked— as long as 
they did indeed work.

(8 ) Turing was among the earliest to use instructions which 

did only the most basic of tasks. The advantage, it turned out, 

of the simplicity of this scheme was that these instructions could 

be combined in a much larger variety of ways to do a larger 

variety of tasks than could machines, like EDVAC, which had only 

a few instructions, each of which did a number of tasks at one 

time.^ It is not surprising that Turing designed his instructions 

each to do a single logical task, for his aim was to design a 

machine which could carry out a variety of different kinds of 

programs, presumably which might be carried out in rather different

According to Carpenter and Doran, op. cit., p. 274, 
von Neumann allowed four types of instructions: load data,
unconditional branch, load contents of some addressed location, 
do arithmetic operation and send the result to a particular 
location.
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combinations of steps. ^  Listed below are the types of instruc-
58tions used by Turing:

Type Task

B Branch Instruction
K Store in main memory
L Load form main memory
M Load from temporary storage
N Store in temporary storage
0 Punch a card
P Read a card
Q Load with data
R Boolean Operations
S Arithmetic Operations
T Turn on valves

Pilot ACE was not the first fully automatic, electronic 

machine to be built in Britain. Minimal facilities were available 

at Manchester in 1948, and, by 1949, several machines were 

completed. The first fully automatic computations were carried 

out at Cambridge on EDSAC in 1949. Pilot ACE was only completed in 
1950. Nor did Turing's work lead to the first commercial, 

fully automatic, electronic machines, for Fereanti Mark I

It was reasonable for von Neumann's machine to have only a 
few instructions, for his machine was designed to carry out only 
one specific type of task, numerical computation. For example, 
von Nuemann did not need an instruction to carry out Boolean 
operations because Boolean operations occur in numerical 
computations only as parts of arithmetic operations. Thus, 
von Neumann only needed to have instructions to carry out the 
arithmetic operations. Nor did von Neumann need so many specific 
instructions about transfer of information within the machine or 
an instruction to turn on the valves— as did Turing.

58 Adapted from a more detailed list in Carpenter and 
Doran, op. cit., p. 275.
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(based on the Manchester machines) and LEO (based on EDSAC) 

appeared in 1951, four years before DEUCE.

Pilot ACE was not ahead of its rivals in the equipment used 

in construction. All of the first generation of electronic 

machines owed a great deal technologically to war developments of 

radar and electronic computing equipment. ENIAC, as well as 

Pilot ACE, used punched Hollerith cards for input and output. 

UNIVAC, EDVAC, EDSAC, and SEAC, as well as Pilot ACE, used 

ultrasonic mercury delay for storage. EDSAC, as well as Pilot 

ACE, had additional magnetic storage.

What, then, was the importance of the Pilot ACE? First of 

all, it was the fastest of all the first generation electronic 

computers. Because of this, it was used for several years for 

important computing projects, especially by the British government. 

Second, and the main reason for its impressive speed, was its 

design as a non-sequential machine with novel programming and 

addressing systems. Non-sequential machines are harder to design 

and harder to program; but, they result in substantial increase in 

operating speed. Turing was the first to arrive at a workable 

design for a non-sequential machine. It was thasc contributions 

to programming and addressing systems that made Pilot ACE 

important to the development of actual computing technology.
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Computing at Manchester

In 1948 Turing decided to leave NPL to work with his long

time friend, M. H. A. Newman at the University of Manchester. 

Apparently, his hope was to get away form the pedestrian details 

of computer construction and go somewhere where he could work on 

the uses of the computer. He was appointed Reader in the Department 

of Mathematics, under the direction of Newman. Turing's 

responsibilities were to include programming of the Manchester 

machines and the devleopment of uses for the computing facilities 

in solving mathematical problems. This suited Turing, for it 

gave him great flexibility in the tasks which he assumed and 

provided him with the time to investigate the computing powers of 

the computer. Turing found this arrangement agreeable because it 

was at this time that he became interested in actively investi

gating the question of whether a computer can think by seeing just

what sorts of mental activities could be programmed into the 
59computer.

Manchester provided a welcome environment for Turing. The 

university had just completed a working prototype of their elec

tronic computer— several years ahead of NPL. Their needs meshed

5°" See Chapter Six for a discussion of Turing s work on 
computers and intelligence.
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with Turing's greatest strength, programming. Turing's affiliation 

was with the mathematics department and the mathematical side of 

computing. Thus he did not have to deal with the administrative 

or engineering problems which he had found so distasteful at NPL. 

His duties were light and only loosely defined; so he had freedom 

to investigate problems of his own choosing. Finally, he had the 

company of a friend and fellow mathematician-logician, Newman, 

who shared the same outlook on computer science.

Although all of the Manchester machines were called Mark I, 

there were actually four distinct early machines:^ a rudimentary 

machine completed (in June, 1948) roughly three months before 

Turing came to Manchester; two prototype machines, the improved 

machine (completed in April, 1949) and the large-scale machine 

(completed in October, 1949); and finally, a production Mark I 

(completed in February, 1951) which was marketed by Ferranti 

Limited, a Manchester manufacturer of electrical and electronic 

equipment. Turing worked on the programming schemes for all but 

the rudimentary machine. Turing made the following contributions 

to programming at Manchester:

Cl) Development of a programming system which utilized a 

teleprinter for typing in input and for receiving output. This

^  The best account of early Manchester computing is in 
M. Campell-Kelly, "Programming the Mark I," Annals of the History 
of Computing, II (1980), 130-168.
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replaced a cumbersome system by which programs were entered In 

binary code by means of a panel of pushbuttons.

(2) Development, together with Newman, of the specifications 

for the logical design for the production Mark I. G. C. Tootill 

provided the actual logical design for the machine, but he 

explicitly worked to the specifications determined by these 

mathematical logicians.

(3) Development of a system for program organization.

Programs were broken into chapters, pages, columns, paragraphs,

and lines. This provided a convenient way of breaking the program

into parts to deal with the storage limitations of the machines,

immediate access but limited electronic store and substantial

direct-access magnetic store. This system of organization was
61characteristic of later Manchester machines as well.

(4) Development of the first input routine (called Scheme A) 

for automatically loading other programs into the machine. 

Unfortunately, it was written in teleprinter code and provided 

only the most basic conveniences of the modern assembler.^

(5) Development of a subroutine systen for the Mark I 

machines. Turing had previously developed subroutine linkage for 

ACE, and the Cambridge computing group had made extensive progress

^  For details, see Campbell-Kelly, pp. 138-139.

^  See Campbell-Kelly, pp. 141-143, for details.
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63in the design and use of sub-programming systems. Thus,
64Turing*s work here was not novel. In fact, one author calls it 

"a rather pedestrian piece of work for a person of his talents."

(6 ) Contributions to the subroutine library. In October,

1949, Cicely Popplewell was hired as Turing*s programming 

assistant. Her responsibility was to create a subroutine library 

for the production Mark I. Turing oversaw this work as well as 

contributing a number of sub-programs himself.

(7) The development of a novel and primitive operating

system (called the "formal mode") for making formal and documenting

the interaction of programmer, machine, and operator.

The advantage of working in the formal mode is that the 
output recorded by the printer gives a complete 
description of what was done in any computation. A 
scrutiny of this record, together with certain other 
documents [,J should tell one all that one wishes to 
know. In particular this record shows all the arbitrary 
choices made by the man in control of the machine, so 
that there is no question of trying to remember what 
was done at certain critical points.^5

(8 ) Authorship of the first programming handbook for the 

Manchester computers.

63 See "Report on the Preparation of Programmes for the 
EDSAC and the Use of the Library of Sub-routines," from the 
Cambridge Computing Laboratory.

^  Campbell-Kelly, p. 131.

From Alan Turing, "Programmer's Handbook for the Manchester 
Computer" (first handbook), p. 55, as quoted in Campbell-Kelly, 
p. 146. See Campbell-Kelly, pp. 146-147, for details on the 
formal mode.
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Turing's programming work at Manchester did not match his 

profound programming accomplishments at NPL. The reason for this 

seems clear. Turing felt he had solved the interesting programming 

problems while working at NPL. The programming problems that 

remained appeared to him as mundane. Besides, there were many 

important uses of the computer which Turing wanted to work on 

rather than work on the routine details of programming. Thus he 

focused attention on these problems instead of on programming.

There is much evidence to support this interpretation. First, 

the overall quality of Turing's programming work at Manchester did 

not match the quality of his earlier work at Princeton, Bletchley, 

or Teddington. Second, an additional person, R. A. Brooker, 

was hired to assume the more routine programming duties when 

Turing expressed a lack of interest in them. Third, although his 
interest in programming flagged, his interest in the computer did 

not. This is evidenced by the fact that, until his death, Turing 

remained the heaviest individual user of the Manchester computing 

facilities. He used them, however, for work on a chess program, 

in mathematical research on Mersenne primes and the Riemann 

hypothesis, and on his new theory of biochemical morphogenesis. 

Fourth, Turing demonstrated a profound lack of interest in 

specific technical improvements which would have greatly 

assisted the average user, but would have in no way improved the 

speed or facility of the machine (e.g., leaving input/output
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in teleprinter notation, lack of interest in an autocode), thus

indicating his lack of interest in the routine problems of
programming. Turing did not see the point of expending energy
making the facilities easier for lesser minds to use. As Wilkes,
head of the Cambridge Computing Laboratory described Turing, ^

He had a very nimble brain himself and saw no need to 
make concessions to those less well-endowed. . . . 
he could not appreciate that a trivial matter of that 
kind [writing and multiplying binary numbers backwards 
for the sake of significant digits^ could affect any
body's understanding one way or the other.

Thus, he was unwilling to develop programming systems that catered 
to. the mediocre mind. This is also probably why his programming 
manual for the Mark I "was not a model of c l a r i t y , a n d  addition
al manuals were wricten so soon after his was completed.

However, if Turing's work on programming is not of great 
importance, his other work at Manchester is. His use of the 
computer to simulate thought (computer chess, solution of 
mathematical problems, language translation) was of first 
importance. However, this work is closely related to his 
theoretical work on artificial intelligence, so discussion of the 
topic is reserved for Chapter Six (on Turing's contributions to 
theoretical computer science).

66 "Computers Then and Now," Journal of the Association of 
Computing Machinery, 15 (1968), p. 4.

^  Campbell-Kelly, p. 65.
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Chapter Four: Von. Neumann's Contributions

to the Development of Physical Computing Machinery

This chapter examines von Neumann's contributions to the 

development of modern computing machinery. Assessing von Neumann's 

contributions to this field shares some of the same methodological 

difficulties as assessing Turing's contributions. A number of the 

files in the von Neumann archives at the Library of Congress 

remain closed to public viewing. Thus, it is difficult to assess 

the war-time relationship between Turing and von Neumann and how 

it affected computer developments. It is also difficult to 

obtain a precise picture of the applications— especially military 

applications— for which von Neumann was making use of the computing 

facilities.

Von Neumann scholarship shares another methodological problem 

with Turing scholarship, and with the study of the history of 

computers in general. Often, developments are group projects, and 

it is hard, for both insiders and outsiders, to assess the indi
vidual contributions to the project. Extensive patent litigation 

has demonstrated this point. There was such controversy involving 

von Neumann's contributions to the ENIAC and especially to the

206
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EDVAC computer projects. Much has been written arguing each side 

of the issue. The aim here is not to settle these disputes. It 

is unclear whether they can be settled and doubtful whether 

settling them would have any significant historical merit. For 

historical purposes, it does not seem essential to choose one 

person out of a group to assign credit for a certain idea. Often, 

the group provides the incubation necessary for an idea, even if 

it is originally the result of a single individual.

What does seem historically useful is to consider how the 

particular training and insight an individual brings with him 

might shape the particular developments of a computer project.

To that end, this chapter will concentrate on examining the way in 

which von Neumann's special training and talents, especially his 

background in logic, affected the specific developments of the 

three computer projects with which he was involved. The overall 

details of these three computer projects, ENIAC, EDVAC, and IAS, 

will be described as succinctly as possible, citing other refer

ences of greater depth whenever possible. An attempt is made, 

however, to incorporate material from the von Neumann archives 

which has bearing on the development of these projects and which 
has not been published before.
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Applied Mathematics and Computing

Just as in the case of Turing, the war interrupted any plans 

von Neumann might have had to work on computing equipment 

immediately after his interaction with Turing at Princeton. Also 

like Turing, it was the war that presented the opportunity for 

von Neumann to become involved in computer construction in a much 

bigger way than he would have been likely to have become involved 

through his original plans with Turing.

Von Neumann was better trained than Turing for his work on 

the construction of actual computing equipment. In fact, von 

Neumann had a unique background in chemical engineering, physics, 

and several branches of mathematics that was of great importance 

to his work on computers. In fact, it might even be argued that 

von Neumann was able to make the important contributions to 

computer science that he did because of his unique training and 

background. As an undergraduate, von Neumann had earned a degree 

in chemical engineering at Eidegenossische Technische Hochschule 

in Zurich. This background in chemical engineering stood him in 

good stead for understanding engineering problems and practices as 

they arose in the computer projects. In fact, his computer work 

was marked by a decided concern for engineering details.

He also had extensive experience in physics. In the 1920‘s 

he did fundamental work in the mathematical foundations of quantum
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mechanics and, beginning in Che late 1930*s, he turned ever more to 

problems in mathematical physics: fluid dynamics, continuum

mechanics for nuclear research, meteorology, ballistics, shock 

problems. This background in mathematical physics provided him 

with experience in physics, familiarity with problems suitable for 

work on the computer, and experience with complicated problems 

in numerical analysis. It also provided him with the general 

background in physics to feel comfortable in the quickly expanding 

field of electronics.

His background in mathematics was extremely wide. He was 

equally comfortable in applied mathematics and in mathematical 

logic— a feat accomplished by few mathematicians. Not only was 

von Neumann familiar with both areas; he had done fundamental 

research in both areas. Beside his work in physics described 

above, he had provided the mathematical foundation for much of 

modern applied mathematics through his work in operator theory and 

in ergodic theory. On the other hand, in the 1920's and 1930's 

he did substantial work on symbolic logic, set theory, axiomatics, 

proof theory, Boolean algebra, and lattice theory. The logic 

background proved useful in his computer work in the logical 

design of the equipment, in coding techniques, and in programming. 

The familiarity with applied mathematics gave him a feeling for the 

problems that had to be solved, the capabilities that a machine 

must have, the role the computer was to play in mathematical
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research, whether pure or applied, and the development of a new 

numerical analysis suited to high-speed computing. The combined 

knowledge of mathematical logic and applied mathematics benefited 

him in the development of algorithms for going from the problem to 

the mathematical solution, and in the development of the 

programming co go from the pure mathematical solution to the 

actual computation. This combined knowledge was also useful in 

developing a theory of error correction for the computers which 

was partly numerical and partly logical.

There was a great difference between Turing and von Neumann 

in this regard. Turing's background was primarily in mathematics 

and mathematical physics. He had to gain his engineering exper
ience on the job at Bletchley during the war. His work in mathe

matical logic was not nearly as substantial as that of von Neumann, 

and his work in applied mathematics was practically non-existent. 

Turing was just beginning his career as the war began. Von 

Neumann was already established as one of the most valuable 

members of the scientific community. His permanent position at 

the Institute for Advanced Study is only oue of many indicators of 

his established position. In fact, von Neumann used his notoriety 

to great advantage during and just after the war to lend credence 

to the ENIAC project, to bring it government connections and 

support, and especially to lend scientific credence to the 

discipline of computer science. Turing had only one influential
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paper and the prospects of an outstanding career to offer to the 

status of computer science.

It was through his interest in applied mathematics that von 

Neumann was eventually brought back to the field of computing. 

Beginning in the mid-1930rs von Neumannfs interest in applied 

mathematics increased. His work focused on the problems of fluid 

dynamics, the theory of shock waves, and the theory of turbulence. 

By the time the United States was drawn into the war effort, 

von Neumann was an expert on shock and detonation waves. This 

expertise in applied mathematics led to his involvement with a 

number of government agencies, including the Ballistics Research 

Laboratory, the Bureau of Ordnance, and the Los Alamos project. 

This interest in applications continued until the end of his life. 

During this time he worked on problems of ordnance, submarine 

warfare, nuclear weapons, military strategy, weather prediction, 

and ICBM's— among others.

Many of the war-time problems of applied mathematics, 

including a significant portion of the work done by von Neumann, 

were not readily accessible to the analytical solutions of clas

sical mathematics. Von Neumann includes in this category the work 

"continuum dynamics, classical electrodynamics through 

hyirodynamics to tae theories of elasticity and plasticity.55̂

^ H. H. Goldstine and J. von Neumann, "On the Principles of 
Large Scale Computing Machines," VN, Collected Works, V, 1.
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Typical of Che difficulties confronted in these problems were

those in hydrodynamics. These problems involved solving non-linear

partial differential equations for which there were no known

analytical methods of solution and for which there were not even

insights into the character of the problems. As von Neumann
2himself assessed the situation:

Our present analytical methods seem unsuitable for 
the solution of the important problems arising in 
connection with non-linear partial differential equations 
and, in fact, with virtually all types of non-linear 
problems in pure mathematics. The truth of this state
ment is particularly striking in the field of fluid 
dynamics. Only the most elementary problems have been 
solved analytically in this field. Furthermore, it 
seems that in almost all cases where limited successes 
were obtained with analytical methods, these were 
purely fortuitous, and not due to any intrinsic 
suitability of the method to the milieu.

It was not for the lack of effort or the lack of first-rate minds
3working on the solutions of non-linear problems either:

The advance of analysis is, at this moment, stagnant 
along the entire front of non-linear problems. That 
this phenomenon is not of a transient nature but that we 
are up against an important conceptual difficulty is 
clear from the fact that, although the main mathematical 
difficulties in fluid dynamics have been known since the 
time of Riemann and of Reynolds, and although as 
brilliant a mathematical physicist as Rayleigh has spent 
the major part of his life’s effort in combating them, 
yet no decisive program has been made against them—  
indeed hardly any progress which could be rated as 
important by the criteria that are applied in other,

2 Ibid., p. 2.
3 Ibid., pp. 2-3.
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more successful (linear!) parts of mathematical 
physics.

Von Neumann recognized the impasse with purely analytical 

techniques and so turned in the late 1930rs to an entirely novel 

computational technique to assist in the solution of these 

problems. This new computational technique was the result of 

von Neumann’s realizing the possibilities of high-speed computing 

equipment and also having a profound understanding of how the 

mathematical physicist used physical insights to aid his mathe

matical solutions. This required someone open to new technologies, 

creative enough to see their utility in a classical field of 

mathematics which requires proofs more than computations, and with 

a profound understanding of mathematical physics. Von Neumann’s 

creativity, openness, and background were crucial to the develop

ment of this new computational technique.

More specifically, the computational technique involves use of 

the computer as an heuristic tool, used to provide insight into the 

analytics of the problem through the computation of approximate 

solutions of a few crucial cases, rather than a complete 

computational solution to the problem to replace the analytical 

solution. Von Neumann arrived at this technique by considering 

the way in which physical.insight r td experimentation have 

provided "heuristic pointers" to the solution of purely mathemat

ical problems. He specifically mentioned calculus and the theory 

of elliptic differential equations as originating from purely
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physical insights, and their leading to a cohesive body of purely

mathematical formulas and techniques. Such was equally true of

the breakthroughs that had been made on non-linear problems:^

Such advances as have been made in the theory of non
linear partial differential equations, are also covered 
by this principle, just in what seems to us to be the 
most decisive instances. Thus, although shock waves 
were discovered mathematically, their precise formu
lation and place in the theory and their true signifi
cance has been appreciated primarily by the modern 
fluid dynamicists. The phenomenon of turbulence was 
discovered physically and is still largely unexplored 
by mathematical techniques.

Many people recognized the fact that a number of mathematical

developments resulted form physical problems. The crucial part of

von Neumann’s technique resulted from his insight into the precise

way in which physics aided mathematics: in its use an an

heuristic guide for the purposes of providing insight into the

problems. Von Neumann described it in this way:^

At the same time, it is noteworthy that the physical 
experimentation which leads to these and similar 
discoveries is a quite peculiar form of experimentation; 
it is very different from what is characteristic in other 
parts of physics. Indeed, to a great extent, experi
mentation in fluid dynamics is carried out under 
conditions where the underlying physical principles are 
not in doubt, where the quantities to be observed are 
completely determined by the known equations. The purpose 
of the experiment is net to verify a proposed theory but 
to replace a computation fros an unquestioned theory by 
direct measurements.

 ̂Ibid., p. 4. 
 ̂ Ibid., p. 4.
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Thus, as von Neumann recognized, Che purpose of these 

experiments was to compute approximate answers to very special 

cases of the problems so as to provide the researcher with better 

insight into the nature of the problem and what its solutions 

might look like, consequently giving him some clues in determining 

analytic solutions to the problems. In fact, as von Neumann 

observed, the role of the wind tunnel in these fluid dynamics 

problems is primarily as an analog device for providing measure

ments of particular solutions. Thus, the wind tunnel is a crude 

sort of analog computing apparatus, which integrates the appro

priate non-linear partial differential equations.

Thus it was to a considerable extent a somewhat 
recondite form of computation which provided, and is 
still providing, the decisive mathematical ideas in the 
field of fluid dynamics. It is an analogy (i.e. 
measurement) |analog] method to be sure. It seems clear, 
however, that digital . . . devices have more flexi
bility and more accuracy, and could be made much 
faster under present conditions. We believe, there
fore, that it is now time to concentrate on effecting 
the transition to such devices, and that this will 
increase the power of the approach in question to an 
unprecedented extent.^

Thus, von Neumann's method for solving non-linear problems led 

him to computing. In doing so, he devised a general method for the 

use of the computer as an aid in mathematical research. The 

computer was to be used to solve numerically special cases of

^ Ibid., p. 5.
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analytically intractable problems. These results were to be 

used as an heuristic guide to theorizing about analytical solutions. 

The use for the computer in mathematics was, to von Neumann, 

not to provide complete numerical solutions to problems, but was 

to be used for heuristic purposes and for simulation.

Von Neumann*s Contributions to ENIAC

During the war, von Neumann*s expertise in fluid dynamics 

was put to use in work on the Los Alamos project. He joined the 

group as a consultant in 1943 and worked on the problem of 

implosion. The aim was to find a technique of making safe 

radioactive isotopes of plutonium reach a critical state quickly, 

through some type of implosion. This was one of the major 

problems confronting the group before finalizing the design for 

the atomic bomb. Von Neumann was able to model the implosion 

problem mathematically. The difficulty remained, however, of 
providing a numerical solution to the problem. The large number of 

computations necessary were being carried out on desk calculators, 

but these machines were not fast enough to handle all of the 
calculations.

It was about the time that it became apparent that the Los 

Alamos problem outstripped the capacity of the desk calculators 

to complete the computations in a reasonable period of time with
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reasonable accuracy that von Neumann first happened to hear about 

a high speed, electronic computer being built at the University of 

Pennsylvania. This machine, ENIAC, was the first electronic, 

high-speed, digital computer. It was designed and built at the 

Moore School of Electrical Engineering at the University of 

Pennsylvania with the assistance of the Bureau of Ordnance. The 

plan for the machine had arisen with John Mauchly, a physics 

professor at Ursinus College, who had suggested to H. H. Goldstine, 

of the Ordnance Department, that such a machine be built for the 

purpose of computing ballistic trajectories. Ordnance was 

agreeable, and construction began in 1943. ENIAC was designed and 

constructed by many under the general direction of Mauchly and 

J. P. Eckert, an engineering professor at the University of 

Pennsylvania.

Plans for ENIAC had already been settled and construction was 

in progress when von Neumann first saw the machine. It is generally 

agreed that von Neumann had no significant influence on the original 

design of ENIAC. The design of ENIAC was unique. It was signif

icantly different from the earlier electro-mechanical machines by 

being completely electronic. However, it also differed from 

later electronic machines in its general design. For an electronic 

machine, it was crude, primitive, and severely restricted by its 

small memory and tedious hand programming. There were several 

reasons for this. First, it was the first such machine to be
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built, and later machines very clearly learned from the experience 

of ENIAC. Second, it was being built in haste as part of a war 

effort. Thus, there was not the leisure for a great deal of 

reflection before the ideas were put into production or for the 

testing of equipment before it was used. Third, there were serious 

drawbacks in computer technology. In particular, the only 

available device for electronic storage of information at the 

time was the bulky, inefficient, expensive, unreliable vacuum 

tube. Otherwise, there was only mechanical and electromechanical 

storage.

Since ENIAC was a general-purpose computer, each particular 

project to .be computed on the machine had to be programmed 

individually. One of the most severe limitations of ENIAC was that 

this programming had to be carried out by hand. It involved 

setting mechanical switches for each piece of equipment in the 

machine, interconnecting these by cables, and mechanically setting 

the function tables. Often this process took time orders of 

magnitude longer than the computation itself. The technique was 

laborious. It was hard to check for programming errors. Perhaps 

worst of all, it was extremely inefficient, since the machine was 

idle during the entire programming process.

After ENIAC was completed and operating, von Neumann did make 

one important improvement to facilitate the programming of the 

machine. He recognized that,, since the numerical data and program
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instructions were coded as electrical pulses of a similar size and 

shape, the two could be processed in the same way by the machine. 

This possibility may well have come to von Neumann in considering 

the design of the universal Turing machine, in which the program 

information and the numerical data were coded in exactly the same 

way and processed together by one part of the machine. Of 

course, central programming such as this is harder to carry out 

when one has to work out the physical as well as the theoretical 

details of the problem. In fact, what von Neumann suggested was 

that the program information could be stored by setting switches 

on the function tables, that part of the machine where switches 

were set to compute fixed functions of any input. Upon von 

Neumann * s recommendation, automatic equipment was added which 

connected the function tables, through the master programmer, to 

the other units of the machines. When one wanted to program the 

computer for a specific task, all one had to do was to set the 

function tables for both instructions and numerical data.

This automatic equipment would then set the other units of the 

machine. Although setting the switches of the function tables 

had to be completed manually, this still resulted in a considerable 

improvement in time and effort over having to set every component 

of the machine by hand. This constituted a significant step 

toward effecting stored program computing.

ENIAC reached working order near the end of 1945. For a
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long time, von Neumann had recognized the utility of the machine 

for scientific research. At his urging, the first substantial 

program run on the machine was by Stanley Frankel and Nicholas 

Metropolis, from the theoretical Physical Division at Los Alamos. 

The project required transferring a million IBM cards from the 

Los Alamos card library to the Moore School! This project was 

completed early in 1946.

Von Neumann was successful in convincing a number of Los 

Alamos researchers to numerically test their theoretical ideas on 

ENIAC. In addition to this work and the computation work carried 

out for the host organization, the Bureau of Ordnance, there were 

also independent scientific utilizations of the machine. The 

Army allowed university scientists to use ENIAC free of charge.

This prompted a wide variety of research projects.^ For instance, 

in 1946 it was used by Hans Rademacher and Harry Huskey for the 

study of round-off errors, by Frankel and Metropolis for a 

calculation on tue liquid drop model of fusion, by Douglas 

Hartree for a study of the boundary layers in a compressible 

fluid flow, by Abraham Taub and Adele Goldstine for an examination 

of the properties of shock waves, by J. Goff on the thermodynamical 

properties of gases, by D. H. Lehmers on the investigation of some 

problems in number theory, and by von Neumann in modelling for

See H. H. Goldstine, The Computer from Pascal to von Neumann, 
pp. 157-167.
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weather forecasting.

ENIAC was used through most of 1946 at the Moore School.

Late that year it was disassembled and moved to the site of the 

parent organization! the Ordnance Bureau, at the Aberdeen Proving 

Grounds, where it was put into operation again in 1947. It 

remained in operation until 1955, when it was disassembled and 

presented to the Smithsonian Institution.

Von Neumann*s Contribution to EDVAC

Due to technological limitations at the time of its conception, 

plans were being made to supersede ENIAC even before it made its 

first computation. The main technological limitation was the use 

of vacuum tubes as the sole quick access means of storage in the 

ENIAC. Eckert, one of the heads of the ENIAC project, proposed 

a new machine based on mercury delay lines, which had been used 

successfully during the war in radar equipment. The plan was 

first proposed in 1944, before ENIAC was near completion and just 

before von Neumann joined the Moore School group. Prospects for 

a new machine were discussed regularly in the latter part of 1944 

among a group of the designers, engineers, and mathematicians who 

had worked on ENIAC. Included in this group was von Neumann. It 

was decided that plans should be put forth for the construction 

of a new type of electronic computing machine, to be called EDVAC.
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The heart of the new machine was to be the mercury delay line 

storage. Mercury acoustic delay lines had been used during the 

war to delay pulses in radar. The delay lines consisted of long 

tubes filled with mercury. Pulses were entered at one end and 

slowly moved to the ether end through the mercury medium. The 

pulse would be weakened, but not seriously distorted, when it 

reached the other end of the tube. For use in EDVAC the output 

of the delay line would be sent into a pulse amplifier and a 

pulse reshaper and then entered back into the input end of the 

delay line. One such delay line and a few tubes for the amplifier 

and reshaper provided a circulating memory capable of storing 

about 1000 bits. This was relatively compact compared with 

ENIAC, where approximately 1000 tubes were required to store 

1000 bits. In fact, EDVAC was designed to contain only about 

3000 tubes, instead of the 18,000 tubes in ENIAC— although EDVAC 

was the more powerful machine! It was finally feasible to have a 

machine capable of carrying out the detailed computations 

necessary for the applied mathematical problems von Neumann had 
in mind.

The use of mercury delay lines in EDVAC mandated changes in 

ocher features. In ENIAC, many of the units could work indepen

dently of one another, so the machine was designed to work in 

parallel. On EDVAC, however, since the delay lines were serial, 

the overall design of the machine was made serial. ENIAC was a
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partly synchrous, partly asynchrous system. With EDVAC, however, 

with all the memory automatic in the delay lines, the machine was 

designed to be completely synchrous. Eckert and Mauchly designed 

a "clock," a central source of pulses to time the entire workings 

of the machine.

Perhaps the largest difference between ENIAC and EDVAC 

concerned the programming of the two machines. There was no 

automatic programming in ENIAC. Apparently the designers had 

considered it for the machine, but due to the exigencies of the 

war and to the fact that the sort of programs used for ballistics 

work would be used for a long time before being changed, they 

abandoned the idea. As stated above, in ENIAC it was certainly 

not an automatic process, and not even a particularly quick 

process to change the plugboard or the function tables. While 

ENIAC was designed so that the program information could be 

encoded in the machine (making it a general purpose machine) 

and while von Neumann assisted the process toward a stored 

program computer by showing how the program information could be 

treated in the function tables in the same way as numerical data, 

there was still one crucial criterion, standing in the way of 

ENIAC beign a stored program computer in the modem sense of the 

term. Because of the inability to quickly change the function 

tables, where the program information was stored, it was 

impossible to have a program which could read and modify itself
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in the course of a computation- A stored program computer in the 

modem sense required an internal memory, capable of quick address 

in which the program information could be stored. The plan was 

for EDVAC to have the requisite memory through the use of 

mercury line technology. Thus, the really curcial difference 

between the two machines was the stored program concept.

As a result of discussions in 1944 and 1945 about the 

proposed new machine, EDVAC, von Neumann wrote a "First Draft 

of a Report on the EDVAC." In this report von Neumann worked 

out, in fine detail, the logical design for "a very high speed
g

automatic digital computer system." The report was distributed 

by Goldstine to the members of the Moore School working on EDVAC 

and to some interested outside scientists. It was the first 

widely distributed document on electronic computers and was the 

first written report of a machine in which programs could be 

stored and modified electronically. The report in fact was used 

in the late 1940's as the basis for computer and stored program 

design.

The major thrust of the report involved the logical control 

of the cschine, an issue much ciscussed by the Moore School 

group during 1944 and 1945. Von Neumann's intention in the

g

See "First Draft Report on the EDVAC," University of 
Pennsylvania, 1945.
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report, however, was not to state simply the logical design for 

the EDVAC, but rather tc state the logical structure and func

tioning of any "very high speed automatic digital computer 
9system." Thus he focused on theoretical issues and mentioned 

technical details about a particular machine only as illustration. 

Von Neumann believed that there was a science of computing which 

transcended the technical details of any particular machine.

This report was to outline the first principles of such a 

science. The report consequently gave general definitions of the 

fundamental units to be found in any computing equipment, the 

principles by which computers in general would operate on data, 

the general theory of programming and control, and the relation 

of these artificial computing systems to the natural computing 

systems of the human brain. It was these general principles 

that could be and were utilized by later designers of computing 

equipment.

Von Neumann's report began by giving a description of the 

structure of an automatic computing system, including the purpose

of the machine and the process which must be completed to carry
*  10 out this purpose:

An automatic computing system is a (usually highly

g "First Draft of a Report . . section 1.1.

^  Ibid., sections i.i-i.4.
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composite) device, which can carry out instructions 
to perform calculations of a considerable order of 
complexity . . .

This purpose is general enough to apply to any general purpose

electronic computer. He then explained how any such machine would

carry out this task:

The instructions which govern this operation must 
be given to the device in absolutely exhaustive 
detail. They include all numerical information which 
is required to solve the problem under consideration 
. . . These instructions must be given in some form 
which the device can sense . . . All these procedures 
require the use of some code, to express the logical 
and the algebraical definition of the problem under 
consideration, as well as the necessary numerical 
material.

Once these instructions are given to the device, it 
must be able to carry them out completely and without 
any need for further intelligent human intervention.
As the end of the required operations the device must 
record the results again in one of the forms referred 
to above. The results are numerical data; they are a 
specified part of the numerical material produced by 
the device in the process of carrying out the instruc
tions referred to above.

The generality of this definition is apparent. Never did he

refer to the specific machine being planned. In fact, he stated,

for example, that instructions could equally well be given in a

number of different forms, which he listed as illustration:

punched into a system of punchcards or on teletype 
tape, magnetically impressed on steel tape or wire, 
photographically impressed on motion picture film, 
wired into one or more, fixed or exchangeable plug
boards— this list being by no means necessarily 
complete.

Von Neumann recognized that technological considerations
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imposed constraints on structure, but that their import in the 

overall design of the machine was secondary. Thus, he was indif

ferent, as far as the theoretical purposes of this report, to 

the particular technology used.

In the report von Neumann also gave a characterization of the 

five basic units that any automatic computing system must have 

and the way in which they function. Again, the characterization 

was completely general, not specific to the EDVAC machine. The 

five fundamental units, as von Neumann described them, are 

as follows:

(a) a central arithmetical unit CA. The purpose of this 

unit is to carry out the fundamental arithmetical operations that 

occur frequently in using the machine as a computing device. As 

von Neumann pointed out, it was most typical to have the machines 

be able to do addition, subtraction, multiplication, and divi

sion, but that many other operations could supplement or replace 

these four operations.

(b) a central control CC. The purpose of this unit is to

insure that the machine carries out the proper sequence of
•»

operations according to the specific instruction given for a 

particular problem inserted into the machine— whatever that 

problem might be.

(.c) a memory M. The purpose of this unit is to store 

intermediate results in arithmetic computations, to store
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instructions, to store additional numerical information such as 

boundary conditions, to store tables of specific functions called 

frequently in the course of computation, and the storage of 

data for statistical and sorting purposes. These three units,

CA, CC, and M, constitute the internal workings of the machine. 

There are then two additional units which permit interaction 

between the internal working of the machine and the outside world 

(the operator of the machine). These two units are:

(d) an input unit I. The purpose of this unit is to tronsfer 

information from the outside recording medium of the device R to 

the internal parts of the machine, CA, CC, and M.

(e) an output unit 0. The purpose of this unit -is to 

transfer information from CA, CC, and M to R.

Von Neumann's characterization was the first purely logical 

characterization of the computing machine. In previous work, 

each of these units and their functions had been described, but 

it had always been in the context of a particular machine. More 

important, in each of these cases the logical design had been 

confused with the development of the circuit design for the 

particular machine. Von Neumann realized that there were 

universal logical functions of these machines that transcended 

the particular circuit design of any one machine, and he was the 

first to isolate these logical characterizations from circuit 

considerations. Von Neumann was drawn to this because of his
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Interest In the science of computing rather than in the engin

eering of computing* However, the distinction was useful to 

future computer engineers as well, for it enabled them to 

separate logical questions from circuit questions. In fact, 

for a number of years computing machinery logical design followed 

the logical specifications of von Neumann's report.

The draft report did not discuss in great detail the conse

quences of or the requirements for the stored programming designed 

for the EDVAC and described in the draft report. However, von 

Neumann did devote attention to stored programming in "On the 

Principles of Large Scale Computing Equipment," which was based 

on a lecture he gave at the Moore School in May, 1946. He first 

pointed out that if a machine were to be general purpose, it 

must not have many connections permanently wired in; otherwise, 

it would lose all of its flexibility.

Due to its very nature a general purpose computer had 
only a very few of its control connections wired in. 
Apart from certain main communication channels these 
fixed connections are usually those which suffice to 
guarantee the device1s ability to perform certain of 
the more common arithmetic processes, such as addition, 
subtraction, multiplication and possibly division or 
square roots. It is the function of the control organ 
and its associated memory to make and unmake the 
balance of the connections needed to carry out the 
routine for a given problem. H

^  "On the Principles of Large Scale Computing Machines," 
Collected Works, V, p. 25.
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Thus, there must be some means for making temporary connec

tions for each particular computation. Von Neumann described 

two alternative methods used in existing machinery for making 

these connections: the method of making all the connections for

each particular problem before the program begins running; and 

the method of establishing connections as the need arises during 

the computation, with the instructions for the necessary connec

tions being stored by some means as a paper tape. The first 

technique, he stated, had the disadvantage of requiring a long 

preparation time before each computation, long enough to dominate 

and thus nullify the high speed of the electronic computing.

For example, on ENIAC, a machine of this type, it might take 

eight hours to set up a problem which the machine wouxd compute 

in five minutes. Another disadvantage was that such a programming 

scheme required a large number of connections and thus a large 

number of vacuum tubes, each of which was being used for one 

purpose only and thus was being used inefficiently. Moreover, 

under this technique, there was a fixed, limited number of con

nections that could be made, so there was a limitation in the 

programming that could be done on such a machine.

The second technique had the advantage of having the 

flexibility of an unlimited number of connections. However, the 

first scheme did have one serious advantage over the second in 

that, once the connections were made, the entire computation
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could take place at an electronic rate. However, the other one 

required connections to depend on gaining instructions mid- 

computation from some source such as a paper tape and making the 

connection by any of. a number of means. This slowed the com

putation considerably from the electronic rate.

Von Neumann's plan was to modify the second scheme so that 

the instructions for the machine could be properly encoded as 

digital information which could then be stored in the electronic 

memory and be operated on like other stored data in an electronic 

way. However, the feasibility of such a scheme rested ou the 

possibility of designing a machine which had logical control and 

transfer of information from memory which was fast enough to not 

dominate multiplication time, the fundamental unit of computation 

time on the computer, and also on coding procedures which allowed 

automatic modification of orders in the midst of a computation.

It should be added that this technique of automatic 
substitutions into orders, i.e. the machine's ability 
to modify its own orders (under the control of other 
ones among its orders) is absolutely necessary for a 
flexible code. Thus, if a part of the memory is used 
as a "function table", then "looking up" a value of 
that function for a value of the variable which is 
obtained in the course of the computation requires that 
the machine itself should modify, or rather make up, 
the reference to the memory in the order which controls 
this "looking up", and the machine can only make this 
modification after it has already calculated the value
of the variable in q u e s t i o n . 1 2

12 Ibid., p. 32.
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However, he gave general arguments showing the feasibility of each 

of these requirements, pointing to existing technology for 
illustration or verification of particular points.

In assessing credit for the priority of stored program 

computing, it would be fair to say that Eckert and Mauchly made 

one contribution, von Neumann a second, and the Manchester 

group a third. Eckert and Mauchly were the first to work out 

all the engineering and design features for a stored program 

computer. Von Neumann was the first to publish an account of 

stored programming and to provide it with a theoretical frame

work, considering both its logical structure and its ramifications 

for the theory of computing. However, the Manchester group was 

the first to have in operation (with their rudimentary model 

discussed in Chapter Three) an actual, stored program computer.

However, none of these statements address the crucial issue 

of who developed the basic idea of the stored program. Eckert 

and Mauchly claim they were the first to arrive at the idea.

In their dispute over the issue with von Neumann they point out 

that there had been plans to make ENIAC an automatic computer with 

the capability of handling its own instructions before von 

Neumann joined them, but that the exigencies of the war required 

that they relinquish the plan to design equipment with these 

capabilities. However, ehe fact that von Neumann could later join 

the group and suggest a simple alteration in the function tables
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which was significantly closer to stored programming belies 

Eckert and Mauchly's claim. It suggests that they had the general 

idea for an automatic machine, but that they did not understand 

the principle behind stored programming— as von Neumann did—  

of treating instructions as numerical information in the same 

way data was treated. This principle was clear in Turing's 

universal machine, and it could be there where von Neumann's 

idea of stored programming originated.

There was acrimonious dispute over priority and credit

concerning other issues involving EDVAC. Eckert and Mauchley

intended to patent many of the design features of EDVAC in their

own names. To that end, they sent out letters to the engineers

on the EDVAC project asking them to waive their patent rights.

They further submitted disclosures to the legal branch of the

Ordnance Department, describing the patent items they intended

to claim. Von Neumann objected that patent rights should not

be given to individuals on this project. Although his reasons

are not entirely clear, it seems that he felt the development of

computer science should be kept as free as possible of patent

hindrances, that there should be as much free interchange of
1 3information about computers as possible. One historian”

13 See Nancy Stern's dissertation, State University of New 
York at Stoney Brook, 1978, "From ENIAC to UNIVAC."
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credits this to the difference between Eckert and Mauchly's 

industrial outlook and von Neumann's academic outlook. There is 

also reason to think that von Neumann was not averse to being 

given the fame, if not the financial reward, for some of the 

design details of EDVAC.

May I say this. As far as we are personally 
concerned we do not anticipate having any interest—  
financial interest . . . and as far as that is con
cerned we are agreeable. We do not want to contribute 
. . .  to our ideas on the thing which will make the 
field less.^

That is, he did not want to have developments credited to him if 

they would prevent the further development of computer science.

A meeting was called at the Moore School on 8 April 1947 to 

discuss patent matters pertaining to EDVAC. That von Neumann was 

not disinterested in the patent issues is indicated by his 

unsolicitedly bringing a patent lawyer to the meeting to represent 

his and Princeton's interests. The minutes of the meeting 

indicate a very strong difference of opinion between von Neumann 

and Goldstine on the one hand and Eckert and Mauchly on the 

other.

One interesting fact to come out of this meeting was von 

Neumann's attitude as to his role in the development of EDVAC.

He was willing to concede that there was a period (called

14 Minutes, p. 7.
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"phase I" in the discussion where work was done on EDVAC before

von Neumann entered the project, presumably for which he should
15receive no credit.

There are certain items which are clearly one man's 
. . . the application of the acoustic tank to this pro
blem was an idea we heard from Pres Eckert. There are 
other ideas where the situation was confused. 'So 
confused that the man who had originated the idea had 
himself talked out of it and changed his mind two or 
three times. Many times the man who had the idea first 
may not be the proponent of it. In these cases it 
would be practically impossible to settle its apostle.

Yet, later in the discussion, von Neumann was less generous in

giving all this credit to Eckert and Mauchly concerning the

acoustic delay lines and related technology.

Dr. von Neumann: Period I you described was before the
acoustic tank came in.

Dr. Mauchly: Including that. First acoustic memories
and numbers, then acoustic memory, then 
the function table to be used as a 
switch and dated the time before you 
came in.

Dr. von Neumann: I think we discussed a number of
serial items. Remember very clearly 
that I proposed one for another type. 
I think that area is listed [in the 
joint work and should not be given as 
individual credit to you].

15 "We might agree to.Phase I,” von Neumann, Minutes, p. 24 

15 Von Neumann, Minutes, p. 8 .
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Dr. von Neumann: I suggested the use of . . .|minutes
incomplete! . . .  as an output to 
. . . |minutes incomplete! whether 
that was a wire or what.l'

However, his attitude towards "Phase II", the time after he 

joined the project, was that the general idea for EDVAC was a 

joint effort and credit should not be given to any individual, 

but that particular limited, special developments could possibly 

be credited to certain people. In fact, after the meeting to 

determine priority rights and after von Neumann realized that 

Eckert and Mauchly were going to file for patents in their own 

names, he decided to file his own statemtne concerning his
18personal contributions to the EDVAC project. They included:

1. A new code for enabling the operation of the EDVAC.
2. The serial performance or progression through the 

system of the various arithmetical operations 
required for the solution of a whole problem.

3. The use of the "iconoscope" as a memory device.

He saw, as did the Patent Office, his report as a formalization 

of a group effort. Moreover, the Patent Office ruled that von 

Neumann's report was a publication, so part of the public domain, 

and thus any items discussed in it could not be given individual 

patent credit. This was a victory for von Neumann, a lass for 

Eckert and Mauchly.

^  Minutes, p. 20.
] 8 From "Informal Report in re Disclosure of John von 

Neumann's First Draft of a Report on the EDVAC," written shortly 
after 2 April 1946, as quoted in H. H. Boldstine, The Computer 
from Pascal to von Neumann, p. 224.
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Work continued on EDVAC until 1949. It was then delivered 

to the Ballistics Research Laboratory, where it was in operation 

from 1951 until 1962. However, many of the principal designers 

of EDVAC left after the initial development period ending in 

1946, and many changes were made after they left. Eckert and 

Mauchly left the Moore School to form their own computer company. 

Von Neumann returned to the Institute for Advanced Study to 

develop his own computer. He took several members of the EDVAC 

staff, most notably H. H. Goldstine and Arthur Burks, with him 
to the Institute to work on this project.

The Institute for Advanced Study Computer

Von Neumann's aim when he left the Moore School was to 

build a computer whose memory was based on the iconoscope (cath

ode ray tube) as used in television, instead of on the acoustic 

delay line which had been used on EDVAC. The advantage he saw 

in the iconoscope was its more rapid access to memory than was 

possible with the acoustic delay line because of the random 

access to inf" rmation in the iconoscope as opposed to the 

cyclic access through the delay line to information in the EDVAC 

system. Soon after he had arrived at the Moore School he had 

considered the possiblities of such a system, and, as the war 

neared its end, he discussed the possibilities of developing
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such cathode ray tubes for computing with the Radio Corporation of 

America (RCA) research division in Princeton.

During 1945 von Neumann began making inquiries concerning 

the possibilities of constructing a computer. His hope was to 

convince the Institute for Advanced Study to support such a 

project. The difficulty was that the Institute was an unlikely 

site for such a project because of its limited facilities and its 

purely theoretical, as opposed to experimental, bent. There was 

not a single laboratory facility at the Institute prior to 

von Neumann's computer project.

In March, 1945, von Neumann received a feeler from Norbert

Wiener asking whether he would be interested in accepting a

position as head of the department of mathematics at Massachusetts

Institute of Technology if facilities were available for working
19on his computer projects. This provided von Neumann with the 

initial leverage to convince the Institute that it might lose 

him if it were not willing to make available there the facilities 

he needed for his computer project. Von Neumann strengthened 

his case by soliciting offers from Chicago and Columbia as well.

By late 1945 von Neumann, with the help of Ostwald Veblen, had 

convinced Frank Ayedlotte, director of the Institute, to involve

19 Letter from Wiener to von Neumann, March 24, 1945,
Von Neumann Archives.
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the Institute in a computer project, and initial planning began. 

After that time, Aydelotte was an unflagging supporter of von 

Neumann's project.

The computer project was designed to be carried out under the 

joint sponsorship of the Institute for Advanced Study, Princeton 

University and RCA, which had a research division in the Princeton 

area and which was to carry out the research and development of 

the electronic tubes for the machine. There was concern at first 

that government funding, at least from the military, would be 

difficult to obtain because of the competition from EDVAC.

Thus, the group turned first to the Rockefeller Foundation for 

support. In the end support did not materialize from the 

Rockefeller Foundation, but, due to the different nature of the 

proposed IAS machine, the government eventually did support the 

project. Initial support came from Army Ordnance. Continuing 

sponsorship came from the same agency, together with Office of 

Naval Research, U.S. Navy, U.S. Air Force, and the Atomic 

Energy Commission.

Despite che heaby government support, von Neumann made it 

clear in his contractual agreement with the government for the 

machine that it was to be used as an experimental, scientific

R eproduced  w ith perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

240

device, not as a tool for production jobs. This is clear from a 
20letter from von Neumann to Admiral Bowen, of the Office of 

Research and Inventions, Navy Department, dated January 23, 1946.

In the letter von Neumann stated the principles under which the 

contract between the Navy and the IAS project were to be drawn:

The performance of the computer is to be judged by 
the contribution which it will make in solving problems 
of new types and in developing new methods. In other 
words, it is a scientific tool, to be used in research 
and experimental work, and not in production jobs.

Von Neumann's plan was that additional machines should be built

to carry out computations that the IAS machine had shown were

possible, thus freeing the Institute machine for strictly

experimental problems.

Thus, if a new type of problem arises which can not be 
handled on other existing computing machines, and which 
this computer may seem likely to solve, then the new 
computer should be used on the problem in question 
until a method of solution is developed and tested—  
but it should not be used to solve in a routine manner 
further problems of the same type. The policy should 
rather be, to have further electronic computers of this 
new type built, which will belong, say, to the Navy, and 
do the routine computing jobs. The Institute's computer 
should be reserved for the developing and exploring 
work as outlined on the preceding page [abovel, and this 
should be the objective of the envisioned project and the 
Institute's function.

In fact, the letter was never sent. However, the purpose 
of the letter (as the letter itself indicates) was merely to put 
in writing a telephone conversation between the two of the same 
day. The following three quotations are from this letter. The 
letter is in the Von Neumann Archives, Library of Congress, 
Washington, DC.
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In fact, three copies were built for the Atomic Energy Commission 

and another by the University of Illinois for the Ballistics 

Research Laboratory.

Von Neumann also outlined the criteria for the selection of 

problems to be worked on by the Institute computer. They are 

the same sort of problems which he had hoped to solve on the 

ENIAC: problems of interest to the applied mathematician which

can not be handled by more classical techniques. It is clear that 

the choice of problems is to be governed by scientific consider

ations, not by consideration of specific government needs.

It is then clear that the problems to be put on the 
computer for development and exploration of methods 
should be judged by fairly general viewpoints, namely:
Are they of a new type, not amenable to handling by 
existing methods and machines? Are they typical of 
a wide and important evolution of applied mathematics, 
in the direction of the major interests and needs of 
the present or the immediately foreseeable future?
In other words, the criteria have to be scientific, 
in the meaning of this term in applied mathematics 
and mathematical physics.

It was not that von Neumann was uninterested in the government 

research needs and only interested in funding his scientific 

project. Von Neumann was a fiercely patriotic immigrant American, 

who was heavily involved both during and after the war with 

government research and agencies. He was prouii of these 

accomplishments and pleased to lend his expertise to government 

research. Rather, he thought that the appropriate role for the 

Institute for Advanced Study, an institution with a tradition of
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purely theoretical research, was the investigation of the theore

tical, scientific uses of the high-speed electronic computer.

Not only would this theoretical role for the Institute be 

most efficient, it is likely the only arrangement to which the 

Institute would agree. Aydelotte, Director of the Institute, 

was able to convince the Institute Board to approve the computer 

project on the grounds that it was a scientific project. He 

likened the computer to the telescope, as an experimental 

instrument necessary to .any research, theoretical or experimental, 

in the scientific field. This was clever, for the need for the 

large-scale telescope was clearly appreciated by the scientific 

community.

I think it is soberly true to say that the existence of 
such a computer would open up to mathematicians, 
physicists, and other scholars areas of knowledge in 
the same remarkable way that the two-hundred-inch 
telescope promises to bring under observation universes 
which are at the present moment entirely outside the 
range of any instrument now existing.21

In fact, Aydelotte did not play on the patriotic feelings of the

Board in his attempt to convince them of the need for an Institute

computer. Rather, he emphasized the prestige that would accrue

from having the premier computing device in the country, on which

21 Minutes of Regular Metting of the Board of Trustees, 
Institute for Advanced Study, 19 October 1945, as quoted in 
H. H. Goldstine, The Computer from Pascal to Von Neumann, 
pp. 243-244. The next quotation is from the same source.
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"scientists from all over the country" would come to do research.

This means, of course, that it would be the most complex 
research instrument now in existence. It would 
undoubtedly be studied and used by scientists from all 
over the country. Scholars have already expressed great 
interest in the possibilities of such an instrument and 
its construction would make possible solutions of which 
man at the present time can only dream. It seems to 
me very important that the first instrument of this 
quality should be constructed in an institution 
devoted to practical applications.

Details were settled and staffing began in 1946. Von Neumann 

was named director of the project and H. H. Goldstine was named 

assistant director. Engineering design was headed by Julian 

Bigelow, and later James Fomerene. Goldstine and von Neumann 

worked on the logical design of the machine and on its mathematical 

capabilities. The extensive work on meteorology programmed on the 

machine was directed by Jules Charney and von Neumann. Von 

Neumann proved to be an able administrator, handling personnel 

problems smoothly and having an amazing capacity for keeping 

abreast of and contributing to every aspect, whether mathematical, 

logical, or engineering, in the construction of the machine.

Since the genesis of the idea for the Institute computer was 

mainly due to von Neumann, and since it was through the abilities, 

the prestige, and the perseverance of von Neumann that the machine 

achieved physica." reality, the IAS computer gives a better 

picture than does EDVAC of von Neumann's vision of the computer 

and of its applications. In a letter of March 19, 1946, von
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Neumann described his hopes and plans for Che IAS machine Co 

M. H. A. Newman, Che BleCchley and ManchesCer compucer scientist.

Von Neumann's descripcion of Che aim of Che machine as

being a "scientific exploraCion Cool" is fairly consonanC wich

Che aims for Che machine von Neumann had discussed wich Admiral

Bowen (described above) and will noc be mencioned furCher here.

However, von Neumann is more specific wich Newman concerning Che

acCual Cypes of quesCions Che InsCiCuCe sCaff would be trying to

answer wich cheir experimencal apparatus.

. . .  we propose to use it as a "scientific exploration 
tool", i.e. in order to find out what to do with such 
a device. That is, I am convinced, that the methods of 
"approximation mathematics" will have to be changed very 
radically in order to use such a device sensibly and 
effectively— and to get into the position of being able 
Co use still faster ones. I Chink Chat the problem in 
this respect is partly logical and partly analytical, 
since finding suitable approximation methods and finding 
and coding the proper machine "setups" may be the main 
bottleneck. We want Co do a good deal of mathematical 
and logical work in parallel with the engineering 
development, a good deal more, with the machine as the 
"experimental tool", when the machine is ready.

The letter also summarizes the technical characteristics von 

Neumann hoped to design into the machine. Paraphrasing them from 

his letter, they include:

(1) Use of the binary system, with precision of approximately
-402 . Equipment would be provided for binary decimal conversion

for input and output, so that the machine could be programmed and 

answer in decimal.
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(2) Capability of reaction times on the order of 10  ̂

seconds.

(3) Addition, subtraction, multiplication, division, and 

square rooting as fundamental operations with tha following

maximum computation times (in seconds): addition and subtraction,
-5 -410 ; multiplication, 10 ; division and possibly square rooting,

2(10"4).
(4) A substantial memory, capable of storing both instructions 

and numerical data (such as initial information, functions, 

intermediate results). There should be capability of storing

4000 40-digit groups. This information should be accessible 

(located, read out, cleared, or read in) in no more than 10  ̂

seconds.

(5) Input and output in tape medium, presumably magnetic.

There should also be means for the direct graphing of output on 

oscilloscope screens.

(6 ) A self-checking mechanism, with the capability of at 

least determining when and where there is a simple failure (one 

in which there are not two or more compounding, simultaneous 

failures).

(7) Use of no more than 2000 ordinary, receiving tubes and 

no more than 100 special tubes.

Von Neumann was also careful in planning the speed and 

capacity of the various units of his machine before construction
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so as to insure ability to solve the problems of applied mathe

matics he wanted his machine to solve. He estimated that a
g

typical ballistics problem required approximately 10 multipli

cations and that the multiplication time in such a problem was 

roughly one-third to one-eight of the total computing time. Thus, 

to complete the problem in a 40-hour week, he estimated that 

multiplications must be carried out in 1/2 to 1/5 of a millisecond.

Von Neumann realized that the overall speed of the machine 

was determined by its slowest internal part, that a bottleneck 

would occur at this part which would defeat the advantages of the 

other units. Thus, he aimed to design a machine where all the 

units worked at speeds such that there would be no bottlenecks. 

Since machine multiplication involved (on the average) five 

transfers of information between the memory and the arithmetical 

organ, von Neumann estimated that an access to the memory should 

take about 50 microseconds to be consonant with multiplication 

speed. Since each such transfer of information involved several 

orders frota the control organ, each such order should take only 
a few microseconds. He finally argued that, due do the signif

icantly smaller amount of information handled in input and output 

as compared with the inner working of the machine in the inter

mediate computations on a problem, the input and output equipment 

could be much slower than the internal equipment without concern 

over a serious bottleneck. Thus, he designed the machine so that
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data could be input or output at the rate of 500 words per second.

Von Neumann organized his design of the IAS machine according 

to the logical characterization of the machine he had arrived at 

in the Draft Report for EDVAC: arithmetical unit, control unit,

memory, input, and output. The most salient features of each of 

these are described below.

The arithmetic unit was comprised of ordinary vacuum tubes, 

with the ability to carry out an elementary operation in approxi

mately a microsecond. The circuits were designed with reliability 

in mind, and so were set up to respond to any electrical impulse 

over a certain minimum threshold no matter what were the details 

of its electrical form. The overall design of the arithmetic 

unit was modelled after the design of a typical desk calculator. 

For example, for multiplication the computer had three registers 

(for temporarily homing the multiplier, multiplicand, and partial 

products as they accrued), an adder (capable of adding two 

quantities), and a counter (which stopped the operation when all 

steps were completed).

One important feature on the IAS arithmetical unit was its 

ability to add the digits of two numbers simultaneously rather 

than serially, one at a time. This was possible because the store 

on the IAS machine had paralled rather than the serial access of 

EDVAC. Thus each of the digits could be added in paralled and the 

addition completed in roughly one instead of 40 units of adding
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22time. For each digit there was an adder with three inputs 

(one for the appropriate digit of each of the two numbers and one 

for carrying from the next smaller digit) and two outputs (one 

for the sum and one for the carry to the next larger digit).

The control unit was also comprised of ordinary vacuum tubes 

with the reliability feature described above for the arithmetic 

unit. The control functioned by withdrawing the instructions, 

a pair at a time (as they were encoded as twenty bits per in

struction in 40 bit words), and causing the machine to execute 

them. Facility was included to change instructions, with the aid 

of the arithmetic organ, in the midst of a computation, so that 

a given order could attain different values as it was repeatedly 

used in the computation. Unlike EDVAC, which used a four-address 

code, IAS used a simple one-address system. Each order consisted 

of a number expressing the location ("the address") in the memory 

and a number expressing the operation to be performed on the 

contents of the memory stored in the location given by that 

address. These two numbers could be encoded in twenty binary

22 The addition was completed in several stages. First, 
each digit of one number was added to the corresponding digit in 
the other number. Forty registers carried out these digit 
additions simultaneously. All the carries resulting from the 
first .stage were then added simultaneously in the forty adders 
to the first sum. Subsequent additions of carries were made 
until there were no more carries.
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digits; so two instructions were stored at one address in the 

memory in order to economize on space.

The fact that IAS could perform arithmetic operations on the

numbers which were codes for instructions set it apart from many

earlier machines. For example, the Bell Laboratory relay machines

had instructions stored on paper tapes which could not be modified

by the machine in the course of a computation. This meant that

the IAS machine could carry out in a simple manner computations

which were not even possible by its competitors. Given appropriate

storage space, IAS could compute all primitive recursive functions.

Yet, these paper tape machines could not compute such simple

primitive recursive functions as x-:xn*x-*x,* *x for arbitrary1 2 3 4 . . . n
integer values of n .

However, in order to gain the ability to modify instructions

internally in the course of a computation required that the process

of coding of problems be more complicated, as von Neumann, himself, 
23explained:

It is partly for this reason [internal modification 
of instructions] that the coding of problems is not a 
mere transliteration of symbols from those of the 
mathematical analysis to those understood by the 
machine. Actually, the steps are as follows: a) the
formulation of the physical situation in a purely 
mathematical terminology; this formulation is usually 
highly implicit and quite unsuited for digital cal
culation; b) the reformulation of the equations in

23 Report on IAS computer project, 1946, pp. 12-13, Von 
Neumann Archives.
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explicit finitistic form suitable for numerical 
calculation; c) the analysis of the logical struccure 
of the final formulation, usually in the form of a 
" f l o w  diagram" showing all inductions; d) "coding" 
proper, based on the "flow diagram", that is, the 
final expression of all operations and quantities in 
machine terms.

In fact, for the logical analysis of the computation procedure and 

for the purpose of obtaining the appropriate coding, von Neumann 

and H. H. Goldstine invented the first flow charts.

The memory unit caused the most engineering difficulties in 

the early computers. There were mutually destructive requirements 

of the storage in these machines because there was a desire for 

as near an infinitely large storage area as was possible and, 

yet, at the same time there was a desire for electronic access 

speeds to these stores. Von Neumann realized that the best 

possible compromise between these mutually exclusive demands was 

a hierarchy of memories, each larger than the preceding one, but 
each also slower than the preceding one. The first level of 

storage was by electronic storage tube, or iconoscope, which was 

designed by the RCA research laboratory. In it information was 

stored in a dielectric substance inside an electronic tube by 

charging miniature condensors. The second level of memory was 

given by magnetic drums. These stored information by magnetizing 

small areas on the face of a cylindrical drum. Tertiary storage 

was provided on punched cards and punched tapes outside the 

machine, with access through the input and output devices.
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The iconoscope storage was important because it enabled 

von Neumann to dispense with the serial mode for the machine. In 

EDVAC, to access a particular datum of information, one would 

have to cycle through the delay line until the particular location 

came up. This caused the overall design of the machine to be 

serial. However, the electrostatic storage tube provided equally 

fast access to any location on its surface. Thus, the machine 

could be designed to run in parallel, since it did not have to 

wait for serial access to information. The result was quicker 

access of material, quicker arithmetical operations (since the 
different digits could be added at the same time, rather than 

serially a pair added at a time), and in general more rapid 

computation times than with the serial EDVAC. In fact, with 
less equipment, IAS was five times faster than EDVAC.

When von Neumann began working on the design of the IAS 

computer, he considered using the electrostatic storage device 

designed by the Manchester group. Instead, the Institute designed 

their own, but similar, device. It was the first electrostatic 

storage used in the United States. It was also the Institute 

machine design that was more important to the next generation of 

computing machinery.

The input-output equipment for the Institute machine was also 

a new technological development. This unit consisted of several 

pieces of teletype equipnciit ~cdifi-d specifically for the
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Institute machine by the National Bureau of Standards, some 

electronic circuitry to connect the various pieces of the 

input-output equipment with each other and with the remainder of 

the machine, and a mechanism to move magnetic wire at various 

speeds. The speed of this equipment was that of electro-magnetic 

and not electronic equipment. However, von Neumann was careful to 

prove that this would not vitiate the internal speed of the 

machine.

To operate tne machine, a keyboard operator would type onto 

teletype tape the instructions to be given to the machine. Once 

completed, this teletype tape would be entered into a second 

teletype machine and another operator would again type the 

instructions for the machine, this time into the second machine. 

The second piece of teletype equipment was specially wired so 
that it would only accept the instructions typed in if they 

compared exactly with the ones typed on the first tape. This 

technique, known later as multiplexing, of having more than one 

piuue ul equipment carry out the same task and only continuing if 

the results agreed, was an entirely novel method designed by 

von Neumann for making computations highly reliable given that the 

users of the machine and each piece of equipment in the machine 

were not all that reliable. Once the tapes agreed, the second 

tape was run synchronously with the slowly moving magnetic wire 

on a wire drive and the data was transferred onto the wire. The
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magnetic wire could then be run quickly to feed the information to 

the interior of the computing machine.

The output consisted of the same wire drive as in the input, 

a relay rack of circuits, and a teleprinter. The results of the 

computation were delivered to the magnetic wire. When the oper

ator was ready for the results, the wire was run at a slow speed, 

the message was picked up and run through the circuits, which in 

turn activated the appropriate keys of the teleprinter.

The Institute computer was invaluable for many military and 

atomic energy computations. However, one of the most novel and 

important applications of the Institute computer was its use in 

numerical meteorology. Von Neumann's interest in the subject 

was entirely in keeping with his interest in fluid dynamics.

Ever since the first world war scientists had been trying to 

predict the weather by calculating mathematically the fluid 

flow of the atmosphere. However, the particular differential 

equations involved required that there be a large number of 

initial data points. Thus, the computing required an extensive 

amount of time. A man with a desk calculator, working eight 

hours per day and thirty days per month, would take two years to 

complete, ̂ one twenty-four hour forecast of a quality comparable i;o 

a synoptic forecast, extrapolating from the present flow using 

established rule-of-thumb methods. ENIAC had been used for some 

weather forecasting by von Neumann and Jules Charney, a well-known
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American meteorologist. Unfortunately, the limited memory and 

speed of ENIAC meant that it took 48 hours of computing time to 

do the twenty-four hour forecast.

In 1952 von Neumann and Chamey completed such a forecast on 

the Institute computer in three hours and would have been able to 

complete it in forty-eight minutes had the machine been operating 

at full speed. This made it feasible for the first time to use 

the computer to do weather forecasting. In fact, by 1953, the 

Institute computer could make these calculations in six minutes.

For simplicity and shorter computing time, all of these models 

of atmospheric flow had been two dimensional. The computations 

had involved only the flow at 18,000 feet above sea level. Von 

Neumann and Charney, once they were successful with the one 

level prediction, went on to calculate two and then multi-level 

models. One of the early three layer models was completed by the 

Institutein under an hour— still an acceptable time for practical 

use. Of course, the multi-layer models gave better accuracy than 

the one layer model. There was an added beaus provided by the 

three layer model, for one of its predictions showed cyclogenesis. 

This was the first mathematical model of the formation of 

cyclones. From the early 1950’s on, the computer became a valuable 

and well-used tool in weather forecasting, and meteorologists 

looked to the work at the Institute for their guidance.

As important as its applications were, the Institute computer
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was probably more important as the prototype of the next gener

ation of American computing machinery. Use of the binary system, 

parallel mode of operation, and one-address coding were all 

important features which were initiated on the Institute computer 

and became standard features on subsequent American computing 

equipment.

The plans for the Institute machine were discussed in a series 

of related papers by von Neumann, H. H. Goldstine, and Arthur 

Burks, entitled: "Preliminary Discussion of the Logical Design 

of an Electronic Computing Instrument," written in 1946 by all 

three, and a three part "Planning and Coding of Problems for an 

Electronic Computing Instrument," published between 1946 and 1948 

by Goldstine and von Neumann alone. Typical of von Neumann, 

these papers were intended to contribute to the science of 

computers. The papers intended to study the general theory of 

computers, not just a description of the design of the Institute 

computer. In fact, in these reports, the authors discussed the 

advantages and disadvantages of all the existing computer 

technology, how computers should be built, and how computers 

should be coded and programmed, Besides the Institute machine, 

the following computers were built according to the specifications 

in these reports: ORDVAC, ILLIAC, AVIDAC, ORACLE, WEIZAC, BESK,

DASK, CSIRAC, and JOHNNIAC.

Von Neumannrs draft report on EDVAC had concentrated on the
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logical character of computing devices and had mentioned technical 

details only as illustration and in passing. These reports 

concentrated, however, on the technical details, using as the 

logical framework as described in the draft report. The various 

technologies available were considered for each of the five 

fundamental units of a high-speed computer as described in the 

draft report. For example, von Neumann compared the advantages 

and disadvantages of trigger circuits, gas tubes, electro-mechani

cal relays, before choosing the iconoscope as the best means of 

storing information. He provided a detailed account of how the 
adder and the multiplier worked, not on the level of the 

electrical circuitry, but on the functional level. This enginee

ring report was dominated by von Neumanns mathematical discipline 

and his desire to develop a science of computers. Thus he made 

very formal mathematical arguments in his engineering 

discussions. He provided careful probabilistic arguments as to 

the speed, time of computations, length of computations, etc.

He discussed the problems of round-off errors and the theory of 

approximation in a mathematical fashion. He provided a detailed 

mathematical analysis of the use of the binary system in the 
computer.

In the draft report on EDVAC von Neumann had carried out no 

analysis of the problems of programming or coaing, although he 

had done some programming and coding in connection with problems
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he had run on ENIAC. Thus, during 1946 and 1947, von Neumann and

Goldstine started to analyse the general problems inherent in the

actual coding and programming procedure. As an earlier quotation 
24points out, von Neumann and Goldstine realized that it was not 

entirely straight-forward to take a mathematical problem and put 

it into the computer to solve.

There were two major steps in the programming of a problem 

for the computer. First, one had to decide which of those se

quences of finitary operations which could be handled by the 

computer would effect the appropriate computation. As an aid to 

this project, the two men developed a crude geometric system for 

displaying the logical sequence of operations that must take 

place in the computation. This technique was refined over 1946 

into a useful and sophisticated tool, which they called "flow 

diagramming." This was, in essence, a sophisticated version of 

our modern system of flow charts.

The second task that must be completed to solve a problem on 

the computer was to do the "static coding," i.e., to write down 

a set of rules, entirely analogous to the description rules of the 

Turing machines, which described the internal working of the 

machine. These rules were "static," as opposed to the "flow" 

of operations shown on the flow diagrams, in that they were fixed 

24 See the quotation to which footnote number 23 of this 
chapter is affixed.
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rules only one of which applied at a time depending on the condi

tions of the machine at the time.

Volume II of the Institute's report, on planning and coding,

was devoted to the study of the methods of coding and the

philosophy governing it. The stated desire of von Neumann and

Goldstine was to develop coding with the following character- 
25istics: (1) simplicity and reliability of the engineering

solution required by the coding; (2) simplicity, compactness,

and completeness of the code; (3) ease and speed of translation

into the code of human language and ease of finding errors;

and (4) efficiency of the code in allowing the machine to work

near its full intrinsic speed.

As illustration of the problems confronted and the possible

solution of coding problems, they provided both the flow diagrams

and the static coding for a number of problems. They showed

how to compute and store an arithmetic operation like
2(au + bu + c)/(du + e) ; how to convert between binary and 

decimal systems; how to carry out double precision, i.e., work 

with numbers that required more than 40 binary digits and so could 

not be stored completely in one location; how to solve analytical 

problems such as computing definite integrals or interpolating a 

function of one variable with tabulated values; and how to carry

25 "Planning and Coding . . Von Neumann, Collected 
Works, V, 81.
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out combinatorial problems, such as placing a random sequence of 

numbers in monotone order or meshing two sequences, where the task 

is primarily logical rather than computational. Finally, they 

showed how to carry out subroutine programming, enabling them to 

use the type of programming they had already demonstrated as 

whole units in a larger, more complicated program.

In sum, von Neumann contributed many important developments 

to the early history of computer science. He improved ENIAC, was 

a major figure among the group that designed EDVAC, and was 

chiefly responsible for the design and development of the Institute 

computer. These computers were important both for providing the 

first high-speed computing ability in the United States and for 

being protorypes of the next generation of American machines.

He was integrally involved in particular important technical 

developments, including: stored programming, use of the binary

system, serial operation, one address coding, flow diagramming, 

separating logical from circuitry design, development of the 

science of programming, and characterization of the logical 

design of computers.

His contributions were not restricted to technical design.

He was extremely valuable to the early development of computer 

science by using his reputation as a first rate scientist to 

promote computer science, both at the Moore School and at the
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Institute for Advanced Study. Until this time, computers 

represented a technology with an uncertain future and with little 

apparent usefulness to science.

Perhaps von Neumann's greatest contribution was his efforts 

to turn the engineering discipline of computers into a science, 

based on general laws incorporating the principles of mathematics, 

logic, and physics, and important to scientific research. Part 

of this von Neumann contributed by showing there was a general 

theory of computing machines involving principles which held 

about all computing machines and which could be discussed without 

detailing the engineering of a particular machine. Part of it 

involved his development of a plan for the use of the computer 
as an heuristic device in the solution of scientific problems.

Part of it involved his demonstration of the profound utility of 

the high-speed electronic computer in the solution of many 

important applications, such as fluid dynamics, atomic energy 

problems, and numerical meteorology. Without von Neumann's 

influence, it might be inappropriate to affix the name "science" 

to the discipline involving computers.
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Chapter Five: The Conceptual Revolution

in the Information Sciences

The last two chapters have discussed Turing and von Neumann's 

contributions to the development of electronic computing equipment 

and to the general design features used in subsequent generations 

of such machines. This type of research is typical of the history 

of the computer field. Most tend to equate the history of computer 

science with the history of computing machinery. The phenomenal 

growth of a new generation of more powerful machines every few 

years has overshadowed other important developments in computer 

science. The remainder of this dissertation will examine a 

theoretical revolution in the computer and information sciences 

which has been obscured by this technological bias. This chapter 

will consider the general development of this conceptual revo

lution. The remaining two chapters will examine the contributions 

due to Turing and von Neumann.

In the decade following the end of the second world war a 

small group of mathematically oriented scientists developed a 

mathematical theory of information and information processing.

261
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For the first time, information became a concept worthy of study 

on its own. It was given the status of a physical parameter, 

such as mass, which could be quantified and studied mathematically. 

This theory was designed to apply to both machines and to living 

organisms. The major figures involved included Alan Turing, John 

von Neumann, Claude Shannon, Warren Weaver, Warren McCulloch, 

Walter Pitts, Norbert Wiener, W. R. Ashby, and a host of less 

important figures. They came to the subject from mathematics, 

electrical engineering, psychology, biology, and physics. The 

problems they considered included a mathematical theory of 

communication, mathematical models of the brain, artificial 

intelligence, cybernetics, automata theory, and homeostasis.

Roots of this work could be found going back as far as the 

middle of the nineteenth century in physics, mathematical logic, 

psychology, and biology. In particular, the work on information 

theory developed primarily out of the following, more traditional 

scientific problems:

(a) Maxwell, Boltzmann, and Szilard's work in thermodynamics 

and statistical mechanics, because of the close analogy of the 

concept of information to the concept of entropy;

(b) the development of control and communication as a 

supplement to the power field in electrical engineering due to 

the development of telegraphy, radio, and television;

(c) the study of the physiology of the nervous system
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throughout the first half of the twentieth century, especially 

through the work of Beraet on homeostasis and the internal 

regulation of living organisms;

(d) the development of functionalist and behaviorist theories 

of the mind in psychology; and

(e) the development of recursive function theory in math

ematical logic as a formal, mathematical characterization of the 

human computational process.

Although these results appear to be, and in many ways are, 

quite diverse, there was a concerted attempt after the war to 

unify the various disciplines through a mathematical character

ization of the concept of information and information processing. 

At the heart of this new field was the idea that an interdis

ciplinary approach could be used to solve problems in both 

biological and physical settings where the key to the problems 

was the manipulation or transmission of information and where 

the overall structure could be studied through mathematical 

models. For example, both the human brain and the electronic 

computer were considered as types of complicated information 

processers, whose similar laws of functioning could be better 

understood by the abstract results deduced from, the mathematical 

models of automata theory.

Atypical of mathematical modelling, the branch of math

ematics meet conspicouslv utilized in information theory was
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mathematical logic.^ This is explained by the fact that mathe

matical logic studies the laws of thought in abstraction; but, 

more particularly, by the fact that in the 1930's logicians had 

been especially concerned with a mathematical characterization of 

the process of computation— whether by human or by machine.

In fact, training in mathematical logic was the most salient

tie between the early pioneers in information theory. Claude

Shannon completed a doctoral dissertation in electrical engineering

at Massachusetts Institute of Technology on the application of

mathematical logic to the study of switching systems. Norbert

Wiener studied mathematical logic with Bertrand Russell and
2explicitly admitted its influence on his later work in cyber

netics. Alan Turing received his doctoral degree from Princeton 

University for work in mathematical logic, Walter Pitts was 

trained by Rudolf Carnap as a mathematical logician, while his 

colleague, Warren McCulloch, was a physiological psychologist 

interested in questions concerning the learning of mathematics.

The polymath, John von Neumann, made a number of contributions 

early in his career to two branches of logic, proof theory and 

set theory.

^ However, there was also substantial use of probability 
(ergodic theory) and differential equations (control theory).

2 See the introduction to Wiener's Cybernetics.
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There is more of a similarity in the work of these men 

right after the war than just their use of mathematical logic to 

solve problems in diverse fields. There was a strong feeling that 

the newly discovered concept of information could tie together, 

in a fundamental way, problems from different branches of science. 

Although these scientists were coming from widely diverse back

grounds and from the vantage of widely diverse problems, they 

were in close contact with one another through collaboration, 

scholarly review of one another’s work, and frequent interdis

ciplinary conferences. For example, Wiener introduced Pitts 

to Shannon's work and worked with him on problems of electronic 

computing at M.I.T.; Shannon was the reviewer in Math Reviews of 

McCulloch and Pitts’ work on neural networks; and, typical of many 

conferences, was the Princeton meeting in 1943 organized by 

Wiener and von Neumann for mathematicians, engineers and physio

logists to discuss problems of mutual interest concerning 

cybernetics and computing. The introduction to Wiener's book on 

cybernetics described the sense of community and common purpose 

among these diversely trained scientists. Perhaps even more 

telling were Wiener's attempts to develop an interdisciplinary 

science known as cybernetics around the concept of feedback 

information, and von Neumann's attempt to unify the work of 

Shannon, Turing, and McCulloch and Pitts in a general theory of 

automata.
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The timing for the growth of this interdisciplinary informa

tion science was not accidental. Rather, it was the product of 

the massive cooperative and interdisciplinary scientific projects 

of the second world war— projects that often carried scientists to 

projects beyond the standard scholarly bounds of their specialties. 

At no other time had there been such mobilization of the scientific 

community. Wiener was led to the subject of cybernetics through 

his participation on Vannever Bush's computing project at M.I.T., 

his work with Y. Lee on wave filters, and his work on fire 

control for air-aircraft artillery— all part of war-related 

projects. Turing and von Neumann used expertise derived from 

war-related computing activities in their work on artificial 

intelligence and automata theory. Shannon's work on a theory of 

communication was the result of the tremendous development of 

the communications due to the development of radar and electronics 

during the war. Similar war connections could be drawn to the 

work of McCulloch, Pitts, and Weaver. The major developments in 

this new theory of information science are discussed below.

Claude Shannon, Warren Weaver, and the Mathematical Theory of 

Communication

While working on communication problems relating to tele

graphy at Bell Laboratories in the 1940's, Claude Shannon became
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involved in developing a general theory of communication which 

would treat the transmission of any sort of information from one 

point to another in space or time. His aim was to isolate and 

give specific technical definitions to concepts general enough to 

pertain to any situation where information was being manipulated 

or transmitted; concepts such as information, noise, transmitter, 

signal, receiver, and message.

At the heart of this theory was a new concept of information. 

To make communication theory a scientific discipline, Shannon had 

to provide a precise new definition of information which trans

formed it into a physical parameter capable of quantification.

To do this he distinguished the concepts of information and 

meaning. Meaning he reserved for what was actually included in a 

particular message. Information he used to refer to the number of 

different possible messages that could have been carried along a 

channel of information depending, say, in the case of a spoken 

message, on its length and on the number of alternative words 

which could have been chosen at each point in the message. 

Information in Shannon's sense was a measure of orderliness (as 

opposed to randomness) in that it told out of how many possible 

random choices one has chosen to send a particular message. The 

more possible choices there are, the larger the amount of 

information transmitted, because the actual message is distin

guished from a larger number of random possibilities.
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Shannon explicitly admitted the importance of previous work

in the communication industry to his interest in a general theory 
3of information:

The recent development of various methods of modulation 
such as PGM and PPM which exchange bandwidth for 
signal-to-noise ratio has intensified the interest in 
a seneral theory of communication. A basis for such a, 
theory is contained in the important papers of Nyquist 
and Hartley5 on this subject. In this paper we will 
extend the theory to include a number of new factors.

H. Nyquist was a researcher at Bell Laboratories working

on the problem of improving transmission speeds over telegraph

wires when he wrote his paper on the transmission of intelligence.

His 1924 paper, which influenced Shannon's later work, was

concerned with two factors relating to the maximum speed at which

"intelligence" can be transmitted by telegraph: signal shaping

and choice of codes. As Nyquist stated,^

the first is concerned with the best shape to be 
impressed on the transmitting medium so as to permit of 
greater speed without undue interference either in the 
circuit under consideration or in those adjacent, 
while the latter deals with the choice of codes which 
will permit of transmitting a maximum amount of 
intelligence with a given number of signal elements.

3 Claude E. Shannon, "The Mathematical Theory of Communi
cation," Bell System Tech. _J., 1948, pp. 31-32.

4 Nyquist, H., "Certain Factors Affecting Telegraph Speed," 
Bell System Technical Journal. 3 (1924), 324-346.

 ̂R. V. L. Hartley, "Transmission of Information," Bell 
System Technical Journal. 7 (1928), 535-553.

® Nyquist, p. 324.
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While most of Nyquist‘s article considered the actual engin

eering problems involved with transmitting information over 

telegraph wires, there was one theoretical section of importance 

to Shannon's work, entitled "Theoretical Possibilities Using 

Codes with Different Numbers of Current Values." In this section 

Nyquist proved the first logarithmic rule governing the trans

mission of information.

Nyquist proved that the speed at which intelligence can be 

transmitted over a telegraph circuit with a given speed follows 

the equation W = k log m , where W is the speed of transmission 

of intelligence, m is the number of current values which can be 

transmitted, and k is a constant. He argued that if there are 

n signal elements per character transmitted, then the total 

number of different characters which can be constructed corre

sponds to the number of sequences of current values of length 

n which can be constructed. Thus there are m11 possible 

characters. If the total number of characters to be transmitted 

is assumed to be constant, then mn 51 constant, or, by taking the 

logarithm of both sides, n log m 3 constant . Since the speed 

of intelligence transmitted W is directly proportional to the 

line speed s and inversely proportional to n , the number of 

signal elements transmitted per character, Nyquist obtained the 

equation W  = s/n . Substituting the above equation into this one, 

he concluded that W = s log m/constant —  which is of the form
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W * K log m if the line speed is assumed to be constant.

Nyquist also prepared a table (listed below) which illustrated 

the advantage of using a greater number of current values for

Number of Current Values Relative Amount of Intelligence
Which Can Be Transmitted With the 
Given Number of Signal Elements

While Nyquist*s work was empirical and concerned mainly with 

engineering issues, and while he used the term "intelligence," 

which masked the difference between information and meaning, his 

work was important for the first statement of a logarithmic law 

for communication and for the examination of the theoretical 

bounds for ideal codes for the transmission of information.

Shannon was later to give a more general logarithmic rule as the 

fundamental law of communication theory, which stated that the 

quantity of information is directly proportional to the logarithm of 

the number of possible messages. Nyquist's law was a specific case 

of Shannon's law, since the number of current values was directly 
related to the number of symbols (bits of information) that could

 ̂Nyquist, p. 334.

transmitting messages: 7

2
3
4
5 
8

16

100
158
200
230
300
400
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be sent. Nyquist was aware of this relation, as his definition of
g

speed of transmission indicated:

By the speed of transmission of intelligence is meant 
the number of characters, representing different letters, 
figures, etc., which can be transmitted in a given 
length of time . . .

By "letters, figures, etc." he meant what Shannon later would have

called "bits of information." Nyquist's table, listing the relative

amount of intelligence transmitted, illustrated the gain in

information consequent upon a greater number of possible choices.

The fact that the table listed the relative amount of intelligence

transmitted indicates Nyquist*s awareness that there was an

important relation between the number of figures and the amount of

"intelligence" (information) being transmitted. This relation is

at the heart of Shannon's theory of communication. Unfortunately,

Nyquist did not recognize the significance of this relation, nor

did he generalize his concept of "intelligence" beyond telegraph

transmissions.

Shannon's other predecessor in communication theory, R. V. 

Hartley, was also a researcher at Bell Laboratories. Hartley's 

intention was to set up a quantitative measure whereby capacities 

of various systems to transmit information could be compared.
His hope was to provide a theory general enough to include

O Nyquist, p. 333.
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telegraphy, telephony, picture transmission and television over 

both wire and radio paths. His 1928 investigation began by 

attempting to establish theoretical limits of information 

transmission under idealized situations. This was important, for 

it led him away from the empirical studies of engineering 

towards a mathematical theory of communication.

Before considering concrete engineering problems, Hartley 

turned to "more abstract considerations." He began by making the 

first attempt at distinguishing a concept of information capable 

of use in a scientific context. He realized that any scientific

ally usable definition of "information" should be based on what 

he called "physical" rather than "psychological" consideration.

By this he meant that information is a concept involving quantity 

of physical data and should not be confused with the meaning of 

a message.

The capacity of a system to transmit a particular 
sequence of symbols depends upon the possibility of 
distinguishing at the receiving end between the results 
of the various selections made at the sending end. The 
operation of recognizing from the received record the 
sequence of symbols selected at the sending end may be 
carried out by those of us who are not familiar with the 
Morse code. We could do this equally well for a sequence 
representing a consciously chosen message and for one 
sent out by the automatic selecting device already 
referred to. A trained operator, however, would say 
that the sequence sent out by the automatic device was
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not intelligible. The reason for this is that only a 
limited number of the possible sequences have been 
assigned meanings common to him and the sending operator. 
Thus the number of symbols available to the sending 
operator at certain of his selections is here limited by 
psychological rather than physical considerations.
Other operators using other codes might make other 
selections. Hence in estimating the capacity of the 
physical system to transmit information we should ignore 
the question of interpretation, make each selection 
perfectly arbitrary, and base our result on the 
possibility of the receiver1s distinguishing the result 
of selecting any one symbol from that of selecting any 
other. By this means the psychological factors and 
their variations are eliminated and it becomes possible 
to set up a definite quantitative measure of information 
based on physical considerations alone.^

Thus Hartley distinguished between psychological considerations

(involving meaning) and physical considerations (involving

information, that is, the number of possible messages— whether

meaningful or not). He used this definition of information to give

the following logarithmic law for the transmission of information

in discrete messages— such as in the case of telegraphy, which

included Nyquist1s earlier law:

H = K log s11 ,

where H is the amount of information, K is a constant, s is the 

number of symbols, n is the number of symbols being chosen, and 

thus s11 is the number of possible symbolic sequences. Once the 
discrete case had been established, he showed how it could be

 ̂Hartley, pp, 537-538.
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modified to treat the case of continuous transmission of infor

mation, as in the case of telephone voice transmission.

Hartley next turned to questions of interference, and de

scribed how the distortion of a system limits the rate of 

selection at which distinctions between transmitted symbols may 

be distinguished with certainty. His special concern (from which 

a great deal of engineering research ensued) was with the inter

ference caused by storage of energy through induction and 

capacitance, and through its subsequent release. He found that 

the total amount of information which could be transmitted over a 

steady state system of alternating currents which is limited in 

frequency to a given range is proportional to the product of the 

frequency-range on which it transmits and the time during which it 

is available for transmission.

Hartley had arrived at many of the most important ideas of 

the mathematical theory of communication: the difference between

information and meaning, information as a physical quantity, the 

logarithmic rule for transmission of information, and the concept 

of noise as an impediment in the transmission of information. 

However, Hartley's aim was specifically to construct a theory 

capable of evaluating the information transmitted by any of the 

standard communication technologies. Starting with these ideas, 

Shannon developed a completely general theory of communication, 

not restricted to the study of technology designed specifically
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for communication. A colleague, Warren Weaver, described Shannon's

theory clearly:

The word communication will be used here in a very broad 
sense to include all of the procedures by which one mind 
may affect another. This, of course, involves not only 
written and oral speech, but also music, the pictorial 
arts, the theatre, the ballet, and in fact all human 
behavior. In some connections it may be desirable to 
use a still broader definition of communication, 
namely, one which would include the procedures by means 
of which one mechanism (say automatic equipment to 
track an airplane and to compute its probable future 
positions) affects another mechanism (say a guided 
missile chasing this airplane) .10

What began as a study at Bell Labs of transmission over telegraph

lines ended as a general theory of communication applicable,

according to Shannon,^ to telegraph, telephone, radio, television,

and computing machines— and, in fact, applicable to any system,

physical or biological, in which information was being transferred

or manipulated through time or space.

10 "Introductory Note on the General Setting of the Analy
tical Communication Studies," p. 3, in Shannon and Weaver, The 
Mathematical Theory of Communication.

11 _  _* See Shannon and Weaver, p. 35.
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According.to Shannon, a communication system consists of five

components related to one another as illustrated in the following
12schematic diagram:

Schematic diagram of a. general communication system

information
source transmitter Receiver Destination

channel

signal
message message

noise
source

These components are:

1. An information source which produces a message or 
sequence of messages to be communicated to the receiving 
terminal . . .

2. A transmitter which operates on the message in some way to 
produce a signal suitable for transmission over the 
channel. . . .

3. The channel is merely the medium used to transmit the 
signal from transmitter to receiver. . . .

4. The receiver ordinarily performs the inverse operation of
that done by the transmitter, reconstructing the message 
from the signal.

5. The destination is the person (or thing) for whom the 
message is intended.

12 See Shannon and Weaver, p. 34.

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

277

The importance of this characterization was that it applied equally 

well to a wide variety of communication problems, provided the five 

components were appropriately interpreted. For example, it 

applied equally well to conversations between humans, interactions 

between machines, and even to communication between parts of an 

organism. Through this generality, the similarities were 

established, for example, between the communication of the stomach 

with the brain and the target with the guided missile.

Hartley recognized that a distinction must be made between

information and meaning. Shannon completed the distinction by

giving the first precise definition of information capable of

scientific usage. A colleague provided a good account of this

definition:^

The word information, in this theory, is used in a 
special sense that must not be confused with its 
ordinary usage. In particular, information must not be 
confused with meaning.

In fact, two messages, one of which is heavily loaded 
with meaning and the other of which is pure nonsense, 
can be exactly equivalent, from the present viewpoint, 
as regards information. . . .

To be sure, this word information in communication 
theory relates not so much to what you do say, as to what 
you could say. That is, information is a measure of 
one's freedom of choice when one selects a message.
If one is confronted with a very elementary situation 
where he has to choose one of two alternative messages, 
then it is arbitrarily said that the information, 
associated with this situation, is unity. Note that it 
is misleading (although often convenient) to say that one

Shannon and Weaver, pp. 8-9.
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or the other message conveys unit information. The 
concept of information applies not to the individual 
messages (as the concept of meaning would), but rather 
to the situation as a whole, the unit information 
indicating that in this situation one has an amount 
of freedom of choice, in selecting a message, which is 
convenient to regard as a standard or unit amount.

More tersely, Shannon stated, "thus in information theory,

information is thought of as a choice of one message from a set of

possible messages."^

Shannon recognized that information in his sense could be

measured by any monotonic function, including the logarithmic

funcitions, whenever the number of possible messages is finite.

He chose the logarithmic function, for the same reason Hartley

did, that it accorded well with our intuition of what the

appropriate measure should be. For example, we intuitively feel

that two punched cards should convey twice the information of one

punched card. If one card can carry n symbols, two will carry
2 2 n combinations, log n = 2 log n gives twice the information

(log n) carried on one card. Shannon chose logarithm base 2 as

the unit for measuring information since it designates one unit of

information to a switch with two positions (log2 2 (positions) = 1).
NThen N two position switches could store l c^ 2 = N binary

14 Shannon, Information Theory," Encylcopaedia Britannica. 1965.   c------------
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digits of information.^ If there were N equiprobable choices, 

then the amount of information would be given by log2 N .

Shannon generalized this equation to the non-equiprobable 

situation, in which case the amount of information H would be 

given by

H =* -(p1 log2 P;L + p2 + ... + pn log2 pn) , 

where the choices have probabilities p^ , ..., pR .

Shannon recognized that this formulation of information was 

closely related to the concept of entropy, since, as mentioned 

above, the concept of information measured the orderliness of the 

communication channel.

Quantities of the form H = -Epi log Pi (the 
constant K merely amounts to a choice of a unit of 
measure) play a central role in information as measures 
of information, choice and uncertainty. The form of 
H will be recognized that of entropy as defined in 
certain formulations of statistical mechanics where p^ 
is the probability of a system baing in cell i of 
its phase space. H is then, for example, the Q in 
Boltzmann's famous H theorem.^

In fact, the concept of entropy had a long history in physics

and, during the twentieth century, had already become closely

associated with the amount of information in a physical system.

"Binary digits" was shortened to "bits" by John Tukey, 
a Princeton professor who also worked at Bell Laboratories.
The introduction of a new term, such as "bits," is a good 
indication of the introduction of a new concept.

^  Shannon refers the reader to R. C. Tobman, Principles of 
Statistical Mechanics, Oxford, 1938.
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Weaver carefully credited these roots of Shannon's work:^

Dr. Shannon's work roots back, as von Neumann has 
pointed out, to Boltzmann's observation, in some of his 
work on statistical physics (1894), that entropy is 
related to "missing information," inasmuch as it is 
related to the number of alternatives which remain 
possible to a physical system after all the macro- 
scopically observable information concerning it has 
been recorded. L. Szilard (Zsch. f. Phys. Vol. 53,
1925) extended this idea to a general discussion of 
information in physics, and von Neumann (Math. Foun
dation of Quantum Mechanics, Berlin, 1932, Chap. V) 
treated information in quantum mechanics and particle 
physics.

This close relation of information to entropy is not surprising, 

for information is related to the amount of freedom of choice one 

has in constructing messages. The fact that there is such a tie 

between thermodynamics, statistical mechanics, and communications 

theory suggests that communication theory involves a basic and 

important concept of the physical universe and is not a frivolous 

scientific product of modern communications technology.

Shannon used his theory to prove a number of theoretical 

results about communication systems and to demonstrate appli

cations to the communications industry. He provided a number of 

results concerning the theoretical limits to practical commun

ications problems. His communication theory had enormous theor

etical significance. It isolated a new concept, information, which 

could be identified in a wide variety of physical settings. It

Shannon and Weaver, fn., p. 3.
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provided a mathematical handle to the theoretical problems of 

Information transmission and processing. Shannon and Weaver 

continued the theoretical study of this subject. Meanwhile, this 

theory provided the basis for interdisciplinary information 

studies carried out by many others on such diverse systems as 

electronic computing machines, physical feedback systems, and 

biological feedback systems.

Norbert Wiener and Cybernetics

While Shannon concentrated mainly on communications engin

eering applications of information theory, Norbert Wiener concen

trated on its application to control problems which had surfaced 

during the war effort and to complicated biological phenomena. 

Wiener's individual scientific projects were intended as illu

strations of the power of the interdisciplinary approach of the 

new science of cybernetics. This new science he created as the 

result of his recognition that a similar approach was required 

to solve several diverse problems he had worked on during the war.

Wiener explicitly described the importance of the war-related 

work to his later work on cybernetics. Speaking of the conviction 

he shared with the physiologist, Arturo Rosenblueth, "that the 

most fruitful areas for the growth of the sciences were those
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which had been neglected as a no-man's land between the various
18 19established fields," he wrote:

We had agreed on these matters long before we had 
chosen the field of our joint investigations and our 
respective parts in them. The deciding factor in this 
new step was the war. I had known for a long time that 
if a national emergency should come, my function in it 
would be determined largely by two things: my close
contact with the program of computing machines 
developed by Dr. Vannever Bush, and my own joint work 
with Dr. Yuk Wing Lee on the design of electrical 
networks. In fact, both proved important.

In 1940 Wiener began work on the development of computing

machinery for the solution of partial differential equations.

One outcome of that project was a proposal by Wiener, supposedly
20suggested to Vannever Bush, for features to be incorporated into 

future computing machines. These features included: numerical

rather than analog central adding and multiplying equipment, 

electronic tubes rather than gears or mechanical relays for 

switching, base of two rather than base of ten, completely 

built-in logical decisions with no human intervention necessary
h
fafter introduction of the data, and an included memory with rapid 

capability of storage, recall, and erasure. The importance of 

these suggestions was that "they are all ideas which are of

18 Wiener, Cybernetics, p. 8 .

^  Wiener, p. 9.
20 Wiener, pp. 9-10.
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21interest in connection with the study of the nervous system."

This was the first attempt to explicitly compare features of the 

electronic computer and the human brain and was an illustration of 

the similarity of structure in diverse settings which Wiener 

emphasized in his cybernetics.

Another war-related program, undoubtedly the most important 

to Wiener's formulation of cybernetics, involved the development 

of fire-control apparatus for anti-aircraft artillery. This 

problem was of great importance at the beginning of the war due 

to German prowess in aviation and the defensive position of 

England. Because of the appreciable velocity of the new German 

aircraft, classical methods for the direction of fire were 

obsolete. Wiener found that any effective control device for 

anti-aircraft equipment must incorporate a feed-back system which 

directs future firings on the basis of the success of previous 

firings. Thus Wiener and Julian Bieglow worked on the theory of 

prediction (in this case of the flight of the aircraft) and on 

how to effectively apply this research to the anti-aircraft 

problem at hand.

It will be seen that for the second time I had 
become engaged in the study of a mechanico-electrical 
system which was designed to usurp a specifically human

^  Wiener, p. 1 1 .
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function— in the first case, the execution of a compli
cated pattern of computation; and in the second, the 
forecasting of the future.^2

Bigelow and Wiener recognized the importance of this concept of 

feed-back in a number of different mechanico-electrical and biolog

ical problems. For example, the movement of the tiller to regulate 

the direction of a ship was shown to involve the same feed-back 

process used in hand-eye coordinations necessary, say, to pick 

up a pencil.

Wiener realized that the mathematics of feed-back control was 

closely associated with parts of statistics, statistical mechanics, 

and information theory.
On the communication engineering plane, it had already 

become clear to Mr. Bigelow and myself that the problems 
of control engineering and of communication engineering 
were inseparable, and that they centered not around the 
technique of electrical engineering but around the much 
more fundamental notion of the message, whether this 
should be transmitted by electrical, mechanical, or 
nervous means. The message is a discrete or continuous 
sequence of measurable events distributed in time—  
precisely what is called a time-series by the. 
statisticians.^

The feed-back problems often reduced to partial differential equa

tions relating to the stability of the system. The third war- 

related project, the work with Lee on wave filters, reinforced 

the close tie tc information theory, for the purpose of their

22 Wiener, p. 13.
23 Wiener, p. 16
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work was to remove extraneous background noise from electrical 

networks. The most important aspect of the work was the under

lying mathematical theory applying to all of these diverse 

engineering problems. Like Shannon, Wiener was moving from the 

art of Engineering to the precision of science. Using the 

statistics of time-series, Wiener was able to show that the 

problem of prediction could be solved by the established mathe

matical technique of minimization.

Minimization problems of this type belong to a recog
nized branch of mathematics, the calculus of variations, 
and this branch has a recognized technique. With the aid 
of this technique, we were able to obtain an explicit 
best solution of the problem of predicting the future of 
a time series, given its statistical nature; and even 
further, to achieve a physical realization of this 
solution by a constructible apparatus.

Once we had done this, at least one problem of 
engineering design took on a completely new aspect. In 
general, engineering design has been held to be an art 
rather than a science. By reducing a problem of this 
sort to a minimization principle, we had established the 
subject on a far more scientific basis. It occurred to 
us that this was not an isolated case, but that there 
was a whole region of engineering work in which similar 
design problems could be solved by the methods of the 
calculus of variations.2^

Due to the recurrence of similar problems of control and 

communication in widely diverse fields of engineering and to the 

availability of a mathematical theory by wnich to organize these 

problems, Wiener decided on the creation of a new interdiscipli

nary science which he called cybernetics. "We have decided to

24 Wiener, p. 17.
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call the entire field of control and communication theory,

whether in the machine or in the animal, by the name of
25Cybernetics . . . ”

Actually, long before Wiener’s formulation of the science of 

cybernetics in 1947, there were results which could be included 

under cybernetics. The word "cybernetics" derived from the Greek 

word "kybernetes" which meant steersman. This latter term was
26used by Plato to refer to careful and prudent public governance.

"Kybernetes" in Latin was "gubemator"— from which our word

"governor" derived. Both as a steersman of public policy and as

a self-regulation mechanism on a steam engine, the connotations
27are faithful to the word’s ancient roots. In fact, the

governor on a steam engine is a feed-back mechanism which

increases or decreases the speed of the engine depending on the

present speed of the engine. James Clerk Maxwell published a 
28paper in 1868 which gave a mathematical characterization of 

governors. Similar feed-back mechanisms were discussed by the

2 5 Wiener, p. 19.

^  See Plato, Republic, I, 346B.
27 For a history of the subject, see Otto Mayr, The Origins 

of Feedback Control.
28 See J. C. Maxwell, "On Governors," Proceedings of the 

Royal Society, London, 1868, 270-283.
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physiologist Claude Bernard around the turn of the century in his

discussion of homeostasis, the means by which an organism
29regulates its internal equilibrium.

Although Wiener only arrived at the name "cybernetics" in

1947, as early as 1942 there were interdisciplinary meetings to

discuss the problems of the new science. The first meeting was

held in New York in 1942 under the auspices of the Josiah Macy

Foundation. The meeting was devoted to problems of "central

inhibition in the nervous system." Bigelow, Rosenblueth, and
30Wiener read a paper which used cybernetic principles to examine

the functioning of the mind. Von Neumann and Wiener called an

interdisciplinary meeting at Princeton in 1943-44 for engineers,

physiologists, and mathematicians to discuss cybernetics and

computing machinery design. As Wiener assessed the situation:

At the end of the meeting, it had become clear to all 
that there was a substantial common basis of ideas 
between the workers in the different fields, that 
people in each group could already use notions which had 
been better developed by the others, and that some 
attempt should be made to achieve a common vocabulary.31

In fact, from discussions with computer engineers up and down the

29 For a discussion of Bernard's work, see W. Cannon,
Wisdom of the Body.

30 Published as "Behavior, Purpose, and Teleology," 
Philosophy of Science, 10 (1943). 18-24.

31 Wiener, Cybernetics, p. 23.
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east coast, Wiener observed, "everywhere we met with a sympathetic 

hearing, and the vocabulary of the engineers soon became contami

nated with the terms of the neurophysiologist and the psycholo- 
32gist." In 1946 McCulloch arranged for a series of meetings 

to be held in New York on the subject of feed-back— again under 

the auspices of the Josiah Macy Foundation. Included at a number 

of these meetings from 1942 on were the mathematicians Wiener, 

von Neumann, and Pitts, the physiologists McCulloch, Lorente de 

No, and Rosenblueth, and engineers, such as H. H. Goldstine 

(who worked on ENIAC and EDVAC). Thus, there was widespread 

interaction in the United States of the participants in the new 

information sciences. A visit to England and France gave Wiener 

a chance to exchange information on cybernetics and artificial 

intelligence with Turing, then at the National Physical Labora

tory at Teddington, and to exchange mathematical results on the 

relation of statistics and communication engineering with the 

French mathematicians at a meeting in Nancy. Thus, there was 

also international exchange of information on this new information 
science.

Throughout the development of Wiener's interest in cybernet

ics, there was a strong bias towards biological as well as

32 Wiener, p. 23.
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electro-mechanical applications of the new discipline. This 

interest goes back to the 1930*s when Walter Cannon led informal 

monthly discussions on scientific method with a small group from 

harvard Medical School. A few members of the M. I.T. faculty, 

including Wiener, began to attend these meetings. It was here 

that Wiener met Arturo Rosenblueth, with whom he was to collabor

ate on biocybernetics for the rest of his career.

Bigelow and Wiener, as a result of their work on anti-aircraft

artillery, realized that feed-back is an important factor in

voluntary activity. As illustration, Wiener described the process

of picking up a pencil: We do not will certain muscles to take

certain actions; rather, we will to pick the pencil up.

Once we have determined on this, our motion proceeds in 
such a way that we may say roughly that the amount by 
which the pencil is not yet picked up is decreased at 
each stage. This part of the action is not in full 
consciousness.

To perform an action in such a manner, there must be 
a report to the nervous system, conscious or uncon
scious, of the amount by which we have failed to pick the 
pencil up at each instant.33

Wiener and Bigelow recognized the importance of feed-back in this

particular situation. As evidence, they pointed to the effect of

pathological conditions such as ataxia, where the feed-back system

is deficient, or purpose tremor, where the feed-back system is

33 Wiener, p. 14.
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overactive, in the inability to carry out such activities as

picking up a pencil. In fact, they felt that the cybernetic

approach could provide a valuable new view to the understanding

of neurophysiology.

We thus found a most significant confirmation of our 
hypothesis concerning the nature of at least some 
voluntary activity. It will be noted that our point of 
view considerably transcended that current among 
neurophysiologists. The central nervous system no 
longer appears as a self-contained organ, receiving in
puts from the senses and discharging into the muscles.
On the contrary, some of its most characteristic 
activities are explicable only as circular processes, 
emerging from the nervous system into the muscles, and 
re-entering the nervous system through the sense organs, 
whether they be proprioceptors or organs of the special 
senses. This seemed to us to mark a new step in the 
study of that part of neurophysiology which concerns 
not solely the elementary processes of nerves and 
synapses but the performance of the nervous system as an 
integrated whole.^

The revelation that cybernetics provided a new approach to

neurophysiology resulted in a joint paper by Rosenblueth, Wiener,

and Bigelow outlining their insights. As the title indicates,^

they gave an outline of behavior, purpose, and teleology from a

cybernetic approach. They argued that "teleological behavior thus

becomes synonymous with behavior controlled by negative feed-back,

and gains therefore in precision by a sufficiently restricted 
36connotation." They also argued that the same broad

34 Wiener, p. 15.
35 "Behavior, Purpose, and Teleology."
36 Rosenblueth, Wiener, and Bigelow, p, 24.
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classifications of behavior (illustrated below) hold for machines

as hold for living organisms. The differences, they maintained,

are functional differences: collcids versus metals, large versus

small differences in energy potentials, temporal versus spatial
37multiplication of effects, etc. They presented the following 

chart as illustration of the various classifications of behavior.

The Rosenblueth, Wiener, and Bigelow Classification of Behavior
38of Machines and of Living Organisms:

Behavior/  \non-active active
(passive) /

non-purposeful purposeful 
(random) /

non-feed-back. feed-back 
(non-teleological) (teleological)

non-predictive predictive * 
(non-extrapolat ive) (ext rapolative)

•k order of prediction (depending on number of parameters)

37 See Ibid., pp. 22-23 for details.
38 As given in Ibid., p. 21, with exception that order of 

prediction is explained here.
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For the most part, however, Wiener's work in biocybernetics

was less philosophical and more physiological than the joint paper

with Rosenblueth and Bigelow would indicate. Typical was a

joint project between Rosenblueth and Wiener on the muscle actions 
39of the cat. In this project they used the cybernetic methods of

40McCall on servomechanism to analyze the system in the way one 

would study an electrical or mechanical system from data provided 

with an actual physiological experiment on the cat. For the 

remainder of his career, Wiener cooperated with Rosenblueth on 

specific physiological projects showing the utility of the 

cybernetic approach to the understanding of physiological processes 

of biological organisms.

Warren McCulloch, Walter Pitts, and the Development of Mathematical 

Models of the Nervous System

Another application of the new information science was to the 

study of nervous systems and, in particular, to the study of the 

human brain. This resulted in mathematical models which were 

partly physiological and partly philosophical. The most famous

39 See Wiener, Cybernetics, pp. 28-30.
40 M. McColl, Servomechanisms, 1945.
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application of information, science in this area was a joint paper 

by Warren McCulloch and Walter Pitts in which they provided a 

mathematical model of the neural networks of the brain based on 

Rudolf Carnap's logical calculus and on Turing's work on theoret- 

ican machines.

The application of the information sciences to psychology 

fit well with movement within the discipline of psychology itself. 

The rise of physiological psychology, the development of func

tionalism, the growth of behaviorism, and the infusion of 

materialism in the biological and psychological sciences all 

contributed to the study of mathematical models of the functioning 

of brains in a very general sense.

Physiological psychology was important to information

science because it contributed the idea that one can understand

the brain by examining its material functioning; that this

functioning is capable of scientific study; and, consequently,

that it is capable of mathematical examination. Beginning with the

work of Helmholtz, Ribot, and James at the end of the nineteenth 
41century, physiological psychology became equated with the study 

of the physiological underpinnings of behavior and experience.

The subject grew to be heavily dependent on physiological research

^  See Gardner Murphy, Historical Introduction to Modern 
Psychology, New York, 1949, for details.

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

294

concerning the central nervous system. Of special importance was
42the work of Waldeyer and Sherrington. Waldeyer's "neurone 

theory," which argued for the independence of the nerve cells and 

the importance of the synapses, was quickly accepted by psycholo

gists and was the basis for most later physiological study of the 

brain. Sherrington's work on reflex arc was the most important 

research in convincing psychologists they should consider a 

neurophysiological approach. McCulloch explicitly pointed to 

Sherrington's work as a precursor to his own research. Their 

work shared another similarity— its idealized nature. Sherrington 

realized that his model of simple reflex was not physiologically 

precise, but only a "convenient abstraction." McCulloch and Pitts 

made a similar observation about their neuron nets.

Research continued in physiological psychology throughout the 

twentieth century. However, its importance increased dramatically 

in the 1930's due to two developments: the implementation of

electroencephelegraphy enabled researchers to make precise 

measurements of the electrical activity in the brain; and the 

growth of mathematical biology, especially Nicholas Rashevsky1s 

Chicago school, which produced Pitts, contributed a precise, 

mathematical theory of the functioning of the brain which could

42 For example, see C. S. Sherrington, The Integrative 
Action of the Nervous System, New Haven, CT, 1906.
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be tested experimentally. Thus, the concentration on the material 

properties of the brain, the emphasis on its functioning rather 

than on its states of consciousness, and the mathematical approach 

of Rashevsky all set the stage for a mathematical theory of the 

functioning brain as an information processor.

An attitude held generally by the physiological psychologists, 

but more generally held among psychologists as well, was the 

functionalist position. James argued in Principles of Psychology 

that mind should be conceived dynamically as opposed to structur

ally. At the end of the nineteenth century there was a strong

belief that psychology should concentrate on mental activity rather
43than on states of experience. E. B. Holt took a radical, and

44almost cybernetic, feedback position towards psychology when

he argued that consciousness is merely a. servomotor adjustment to

the object under consideration. As one historian of psychology
45assessed the importance of functionalism:

Functionalism did not long maintain itself as a school; 
but much of the emphasis lived on in behaviorism . . . 
and in the increasing tendency to ask less about 
consciousness, more about activity . . .

43 See William James, Principles of Psychology, New York.
1890. -----

44 See E. B. Holt, The Freudian Wish, New York, 1915.
45 Gardner Murphy, p. 223.
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The importance of functionalism to information science is clear: 

it concentrated on the functional operation of the brain; and it 

conceived of the brain as a processor (or information)— as a doer 

as well as as a reflector.

Behaviorist psychology concentrated on behavior rather than

consciousness. Thus it helped to break down the distinction

between the mental behavior of humans and machines. This assisted

the acceptance of a unified theory of information processers—

whether they be men or machines. American behaviorism was a revolt

against the old-style, introspective psychology of Wundt and

Titchener. In the attempt to make psychology scientific, there

was a movement toward materialism at the end of the nineteenth

century. Behavior was observable and therefore capable of

scientific study. Watson, the leader of American behaviorism,

thus concentrated on "scientific" concepts such as effector,

receptor, and learning as opposed to the old concepts of sensation,
46feeling, and image. In fact, Watson also conceived of mental 

functions as a type of internal behavior. One sees much the 

same attitude taken by Turing in his conception of thinking 

machines— whether human or mechanical. In fact, although 

Watson's behaviorism did not convince the majority of American

46 „i>ee J. B. Watson, Psychology from the Standpoint of a 
Behaviorist. New York, 1919.
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psychologists, there was a group of dedicated behaviorists who

conducted experiments using the condition-response method. The

most important of these in the 1930's was Lashley, who had a

significant influence on McCulloch and Pitts' work. Lashley's
47viewpoint is indicated by the following quotation:

To me the essence of behaviorism is the belief that the 
study of man will reveal nothing except what is 
adequately describable in the concepts of mechanics 
and chemistry, and this far outweighs the question of 
the method by which the study is conducted.

Warren McCulloch was trained within this psychological

tradition of experimental epistemology. As an undergraduate at

Haverford and Yale, he majored in philosophy and psychology. He

then went to Columbia, where he received a master's degree in

psychology for work in experimental aesthetics. After this,

he entered the Columbia Medical School, where he studied the

physiology of the nervous system.

In 1928 I was in neurology at Bellevue Hospital and in 
1930 at Rockland State Hospital for the Insane, but my 
purpose never changed |to manufacture a logic of 
transitive verbs|. It was then that I encountered 
Eilhard von Doramus, the great philosophic student of 
psychiatry, from whom I learned to understand the logical 
difficulties of true cases of schizophrenia and the 
development of psychopathia— not merely clinically, as 
he had learned them of Berger, Birnbaum,Bumke, Hoche, 
Westphal, Kahn, and others— but as he understood them 
from his friendship with Bertrand Russell, Heidegger, 
Whitehead, and Northrop— under the last of whom he 
wrote his great unpublished thesis, "The Logical Structure

K. S. Lashley, "The Behavioristic Interpretation of 
Consciousness," Psychol. Rev., 30(1923), p. 244.
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of Mind: An Inquiry into the Foundations of Psychology
and Psychiatry." It is to him and to our mutual friend, 
Charles Holden Prescott, that I am chiefly indebted 
for my understanding of paranoia vera and of the 
possibility of making the scientific method applicable 
to systems of many degrees of freedom.48

McCulloch left Rockland to return to Yale. There he studied

experimental epistemology with the psychiatrist Dusser de Barenne.

Upon de Barenne*s death, he moved to the University of Illinois

as a Professor of Psychiatry, where he continued his work, at

this point collaborating with Pitts, on experimental epistemology.

His career concluded at the Research Laboratory of Electronics

at M.I.T., where he went in 1952 to work with Pitts, Wiener, and

others on electronic circuit theory of the brain.

Walter Pitts came from a more mathematical background than 

McCulloch; nevertheless, it was tied to this work in experimental 

epistemology. Pitts was trained in mathematical logic by Rudolf 

Carnap at the University of Chicago. While there, he worked 

with Professor Nicholas Rashevsky and his school of biophysicists. 

Also while at Chicago, Pitts met the older McCulloch, with whom 

he began collaboration on a study of the mathematical structure 

of systems built out of nerve nets. Through a mutual friend,

Dr. J. Lettvin of Boston City Hospital, Pitts was introduced to 

Wiener and Rosenblueth. Later the same year, 1943, Pitts accepted

48 ̂ Warren McCullcch, "What is a Number that a Man May Know 
It?" as reprinted in Embodiments of Mind, pp. 2-3.
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a permanent position at M. I.T. to work with Wiener and learn from 

him the cybernetic approach.

At that time Mr. Pitts was already thoroughly 
acquainted with mathematical logic and neurophysiology, 
but had not had the chance to make very many engineering 
contacts. In particular, he was not acquainted with 
Dr. Shannon's work, and he had not had much experience 
of the possibilities of electronics. He was very very 
much interested when I showed him examples of modem 
vacuum tubes and explained to him that these were ideal 
means for realizing in the metal the equivalents of his 
neuronic circuits and systems. From that time, it 
became clear to us that the ultra-rapid computing mactu- 
ine, depending as it does on consecutive switching 
devices, must represent almost an ideal model of the 
problems arising in the nervous system. ̂

Pitts1 work at the Research Laboratory of Electronics involved the

relation between electronic computers and the human nervous system.

During this time his collaboration with McCulloch continued, and

eventually McCulloch joined him at M.I.T. in 1952.

Early in his career, between 1919 and 1923, McCulloch worked 

on a problem from philosophical logic, that of creating a formal 

logic to explain the usage of transitive verbs. While working on 

this project, he became interested in another problem in philo

sophical logic, the logic of relations. Recent mathematical 

developments had stirred this interest. As McCulloch recalled:^

The forms of the syllogism and the logic of classes were 
taught, and we shall use some of their devices, but there

49 Wiener, Cybernetics, p. 22.

McCulloch, "What is a Number," in Embodiments, pp. 7-8.
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was a general recognition of their inadequacy to the 
problems in hand. . . .  It was (Charles| Peirce who 
broke the ice with his logic of relatives, from which 
springs the pitiful beginnings of our logic of relations 
of two and more than two arguments. So completely had 
the traditional Aristotelean logic been lost that 
Peirce remarks that when he wrote the Century Dictionary 
he was so confused concerning abduction or apagoge, and 
induction that he wrote nonsense. . . . Frege, Peano, 
Whitehead , Russell, Wittgenstein, followed by a host of 
lesser lights, but sparked by many a strange character 
like Schroeder, Sheffer, GUdel, and company, gave us a 
working logic of propositions. By the time I had sunk 
my teeth into these questions, the Polish school was 
well on its way to glory. In 1923 I gave up the attempt 
to write a logic of transitive verbs and began to see 
what I could do with, the logic of propositions.

It is clear that what McCulloch had in mind was a psychologic*

al, rather than a philosophical, theory for the logic of relations.

Whereas a philosopher would have attempted to construct a formal

system which mirrored typical usage of the logic of relations,
McCulloch intended to develop a theory which explained the

psychological underpinnings, not just the formal structure.

My object, as a psychologist, was to invent a kind of 
least psychic event, or "psychon," that would have the 
following properties: First, it was to be so simple an
event that it either happened or else it did not happen. 
Second, it was to happen only if its bound cause had 
happened— shades of Duns Scotus!— that is, it was to 
imply its temporal antecedent. Third, it was to propose 
this to subsequent psychons. Fourth, these were to be 
compounded to produce the equivalents of more complicated 
propositions concerning their antecedents.

In 1929 it dawned on me that these events might be 
regarded as the all-or-none impulses of neurons, combined 
by convergence upon the next neuron to yield complexes 
of propositional events. During the nineteen-thirties, 
first under influences from F. H. Pike, C. H. Prescott, 
and Eilhard von Doramus, and later, Northrop, Dusser 
de Barenne, and a host of my friends in neurophysiology,
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I began to try to formulate a proper calculus for these 
events by subscripting symbols for propositions in some 
sort of calculus of propositions (connected by impli
cations) with the time of occurrence of the impulse in 
each neuron.51

Technical problems stood in the way of his psychology of 
52propositions. It was then that McCulloch met Pitts, who was

able to provide the requisite mathematical theory to resolve these

problems. The result was their famous joint paper, "A Logical
53Calculus of the Ideas Immanent in Nervous Activity." The paper

was published in Rashevsky's journal, the Bulletin of Mathematical

Biophysics, where it went unnoticed by the biology and psychology

communities until von Neumann popularized it.

In this paper, using as axioms the rules McCulloch wished to

be true for his psychons as well as Carnap's logical calculus and

Russell and Whitehead's notation, McCulloch and Pitts provided a

logical model of neuron nets which showed their functional

similarity to Turing's computing machines.

What Pitts and I had shown was that neurons that could 
be excited or inhibited, given a proper net, could 
extract any configuration of signals in its input. 
Because the form of the entire argument was strictly 
logical, and because G8 del had arithmetized logic, we

51 Ibid., pp. 8-9.
52 See Ibid., p. 9 for a listing of these problems.

^  Bulletin of Mathematical Biophysics, 5 (1943), pp. 115-
133.
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had proved, in substance, the equivalence of all general 
Turing machines— man-made or b e g o t t e n . 54

As von Neumann emphasized in his General and Logical Theory of 

Automata, what McCulloch and Pitts did, in essence, was to show how 

any functioning of the brain which could be described clearly and 

unambiguously in a finite number of words could be expressed as one 

of their formal neuron nets. The close relationship between 

Turing machines and neuron nets was intentional on the part of the 

authors, and it was soon apparent that neuron nets, when supplied 

with the analog of an infinite tape, were equivalent to Turing 

machines.^ With the Turing machines providing an abstract 

characterization of all thinking in the machine world and McCulloch 

and Pitts' neuron nets providing an abstract characterization of 

thinking in the biological world, the equivalence result provided 

a unified theory of thinking for both the physical and the biologi

cal worlds.

Their paper not only showed the similarity in the abstract 

functioning between the human brain and computing devices; it also 

provided a way of conceptualizing the brain as a machine in a more 

precise way than had been available before. Thus there was a means

^  Ibid., pp. S—10.

^  See the discussion in Chapter Seven. The class of 
Neuron nets is not as wide as the class of Turing machines. See 
Embodiments of Mind, p. xviii, for details.
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for further study of the brain, starting from a precise mathemati

cal formulation.

But we had done more than this, thanks to Pitts' 
modulo mathematics. In looking into circuits composed of 
closed paths of neurons wherein signals could rever
berate, we had set up a theory of memory— to which every 
other form of memory is but a surrogate requiring 
reactivation of a t r a c e . 56

In a series of papers,McCulloch and Pitts carried out the

mathematical details of this theory of the mind, providing, for

example, a model of the way in which humans know universal

("for all") statements.

The precision of their mathematical theory enabled a great 

deal of additional speculation about the functioning of the mind. 

This was done at the expense of a detailed theory of the biological 

structure and functioning of the individual nerve cells. Similar 

to Sherrington's model of the simple reflex, which he termed but 

a "convenient abstraction," McCulloch and Pitts* neurons were 

idealized neurons. One knew what the input and output would be; 

but they were "black boxes," closed to inspection as far as their 

internal structure and functioning were concerned. Practicing

^  McCulloch, Embodiments, p. 10.

^  See "A Heterarchy of Values Determined by the Topology 
cf Nerve Nets" (1945), "Finality and Form in Nervous Activity" 
(1946), and 'How We Know Universals" (1947). All are included in 
Embodiments of Mind.
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58physiologists objected that not only was this model of neurons

incomplete, it was inconsistent with facts known about actual

neurons. They argued that the simplicity of the idealized neuron

was so misleading as to vitiate their results. Von Neumann,

who was the popularizer of McCulloch and Pitts* theory to the

biologists, argued that the simple, idealized nature of the model

was necessary to understand the basic, logical nature of the

functioning of these neurons and that once this nature was known,

it would be easier for the biologists to account for the secondary

effects due to the physiological details of the neurons. This

disagreement is discussed in more detail in Chapter Seven.

McCulloch and Pitts worked on a number of specific projects

using their mathematical theory to analyze aspects of the

functioning of man's nervous system. An article of 1950, entitled
59"Machines that Think and Want," by McCulloch provided a 

retrospective of the possible applications of their theory, 

emphasizing especially the application of cybernetic techniques 

to understanding the functioning of the central nervous system. 
Typical of McCulloch and Pitts' application of information to

58 See von Neumann, General and Logical Theory of Automata. 
This is discussed in more detail in Chapter Seven.

59 Included in Embodiments of Mind, pp. 307-318.
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physiology was a joint project in 1947 on prosthetic devices to 

enable the blind to read the printed page by ear.*^ The problem 

actually resolved into a problem of pattern recognition in order 

to translate letters of various sizes into particular sounds.

Using cybernetic techniques, they produced a theory relating the 

anatomy and physiology of the visual cortex, which exhibited a 

similarity between human vision and televideo. Consequently, 

they were able to arrive at a reasonably successful principle for 

a translating device.

Alan Turing, Automata Theory, and Artificial Intelligence

As was discussed in the third chapter, Turingrs computer work 

was influenced by his war experiences at Bletchley Park. Although 

he had already considered building a computer before the war 

began, his intentions were solidified by the experience. More 

important, the war provided him with technical engineering experi

ence useful in designing a physical machine such as ACE. Although 

ACE can be viewed as an attempt to see whether Turing's theoretical 

machines couid be effected as actual, physical machiires--aad 

there is reason to believe that Turing viewed the project as such—  

his main contributions to theoretical computer science are found

60 See Wiener, Cybernetics, pp. 31-32, for a description of 
this project, or P. de Latil, Thinking by Machine, pp. 12—13.
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in his pre-war work on Turing machines and in his later program

ming work at the University of Manchester.

The work on Turing machines provided the basis for the modern 

theory of automata. Modern computer scientists still use Turing 

machines as a way of comparing the powers of computing automata.

In his early work Turing described the basic functions and compon

ents any computing automaton must have, whether the automaton be 

electro-mechanical or biological. His Turing machines were 

designed to provide a direct formal analogue of the way in which 

the human computer functions; and, in.creating these machines, 
Turing gave a precise, mathematical model of the way the mind 

functions when carrying out computations. In this model he 

provided a clear characterization of the processing of information. 

This was not lost to McCulloch and Pitts, who used Turing's machine 

characterization as the basis for their characterization of human 

neuron nets as information processors.

Turing's work at the University of Manchester was among the 

earliest of investigations of electronic computers as artificial 

intelligence. He believed that electronic machines were not only 

capable of doing numerical computations, but also could be built 

to be general-purpose information processers capable of carrying 

out any mental activity of which the human mind was capable. He 

explicitly attempted to break down the distinctions between human 

and machine intelligence and to provide one standard of
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intelligence, in terms of mental behavior, upon which both 

machines and biological organisms could be judged. In providing 

this standard, he considered the automata only on. the basis of the 

information which was input and output. Thus, Turing, as well as 

Shannon and Wiener, was moving toward a unified theory of infor

mation and information processing which applied to both the machine 

world and the biological world. The details of this theory are 

discussed in the next chapter.

It is important to note that Turing, although isolated in 

England from the bulk of the theoretical work being accomplished 

in America, did have some contact with his American colleagues.

He corresponded with von Neumann. During the war he made a secret 

trip to the United States— presumably related to his computer 

work, although the details are not available. He knew of 

McCulloch and Pitts' work using his Turing machines. Wiener 

visited him in 1947 to discuss the new science of cybernetics.

There were other scientists in England, in particular W. R.

Ashby in the field of homeostasis, working on similar problems in 

theoretical information science, of which Turing was aware. Thus 

Turing, although inclined to investigate problems of his own 

choosing and outside of well-established research areas, was 

cognizant of other work in theoretical information science, if 

not a participant in cooperative research himself.
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John von Neumann and the General Theory of Automata

Von Neumann Is an appropriate culminating figure for the 

early period in the information sciences because of his attempts 

to unify the work of his colleagues. As was discussed in previous 

chapters, in his early career von Neumann made significant 

contributions to the development of mathematical logic. While at 

the Institute for Advanced Study in Princeton he first engaged in 

the discussion of computing machines through his interactions 

with Turing. Again, it was because of war-related work that von 

Neumann required the additional computing power possible only 

from an electronic computing machine. Thus von Neumann became 

involved in the computer project at the University of Pennsyl

vania being carried out for Army Ordnance. The upshot was his 

central role in the logical design (using ideas from mathematical 

logic) for EDVAC and his leadership in the IAS computer project.

Von Neumann's war-related computer activities spurred his 

interest in further theoretical work in the information sciences. 

His main interest was in developing a general, logical theory of 

automata. The bnpe was that this general theory would unify the 

work of Turing on theoretical machines, of McCulloch and Pitts 

on neural networks, and of Shannon on communication theory.

Whereas Wiener attempted to unify cybernetics around the idea of 

feedback and control problems, von Neumann hoped to unify these
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various results, in both the biological and mechanical realms, 

around the concept of an information processer— which he called 

an automaton. Generally, automata are devices which carry out 

actions through the aid of a hidden mechanism. However, von 

Neumann was primarily concerned only with those automata whose 

action involved the processing of information.

The task of constructing a general and logical theory of 

automata was too large a project for von Neumann to carry out in 

detail in the final few years of his career. All he could do- 

was provide a- programmatic framework for the further working 

out of the general theory and limit himself to developing a few, 

specific aspects. Three interrelated topics were of primary 

concern. His foremost interest was with complicated automata, 

such as the human nervous system or modern electronic computers, 

and the importance complexity played in information processing. 

Second, he was interested in another class of highly complex 

automata— those capable of self-reproduction. He desired a model 

which would account for both the universal Turing machine and the 

genetic passage of information. Toward this problem, he designed 

a number of self-reproducing automata, both mechanical and 

organic. Third, he was interested in the probabilistic nature of
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automata. To this end, he wrote a paper**3- giving a probabilistic 

logic which tried to examine the problem of reliability for a 

complicated automaton containing unreliable components. The 

details of these projects are discussed in Chapter Seven.

Von Neumann did not merely attempt to incorporate prior work

of others into his general theory of automata. Rather, he was

in close contact with other information scientists. He discussed

computers and artificial intelligence with Turing when they were

both at Princeton. He had an active correspondence with Wiener

and Weaver. Von Neumann and Wiener were the principal organizers

of the interdisciplinary Princeton meetings in 1943 on cybernetics

and computing. Von Neumann was in regular attendance at the
62Macy Foundation meetings. In fact, it was a paper by Pitts 

at one of these meetings on the probabilistic nature of neuron 

nets that interested von Neumann in the probabilistic issues of 

automata. In sum, von Neumann recognized the relation of his 

work to the broader developments in theoretical information 

science.

61 See "Probabilistic Logics and the Synthesis of Reliable 
Organisms from Unreliable Components," Collected Works, V,
329-378.

62 See the introduction to McCulloch, Embodiments of Mind, 
for a discussion of this point.
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Chapter Six: Turing*s Contributions to the Development

of a Theory of Information Processing

Chapter Two demonstrated that Turing*s work on computable 

numbers answered questions about the foundations of mathematics of 

interest to mathematical logicians. Chapter Three demonstrated 

how the same work on computable numbers was utilized in the devel

opment of computing machinery. This chapter will show how the work 

on computable numbers was the basis for Turing's theoretical work 

on information processing and the reasons why it was of interest to 

the psychologists and theoretical computer scientists.

Turing must be credited with three significant contributions 

to the general theory of information processing:

(1) His contributions to the development of the study of 

artificial intelligence, including his tenacious argument that 

machines can be built which think, his criterion for deciding 

whether a machine can be said td be thinking, and his efforts to 

actually construct thinking machines;

(2 ) the application of results from mathematical logic to the 

information sciences, especially to automata theory; and

(3) his general characterization of brains and computers as

311
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thinking automata, based on his idealized Turing machines.

Turing was not responsible for development of an organized, 

detailed theory of automata. Von Neumann was. Turing never 

developed a coherent theory of information processing which 

subsumed the study of both artificial and natural organisms.

This was due to Szilard, Shannon, Wiener, Ashby, and von Neumann. 

Turing's contributions lay at the pre-discipline level. Turing 

was important for the many profound and novel thoughts and devices 

he contributed, not for the organization of ideas into a coherent 

and developed theory. Turing is most important for basic ideas: 

the invention of the Turing machine, the earliest attempts to 

discuss computable functions in terms of machines that can carry 

out the computations, the application of mathematical logic to 

the theory of automata, recognizing the striking similarities 

between the functioning of the brain and the functioning of the 

electronic computer, determining the criteria for deciding when a 

computer could be said "to think," the plan for education of 

unorganized machines, and the early attempts to program electronic 

computers to carry out thinking activities such as chess playing. 

All of these contributions relate to the one question foremost in 

Turing's mind: Can machines think?

Throughout his career Turing believed that the computer 

could adequately model the thought processes of the human brain. 

The first evidence of this is in the very first paper he wrote on
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automata, the famous 1936 paper^ on computable numbers. In 

designing his (Turing) machines, Turing required that they have 

the features and limitations a person computing would have, since 

the question he was investigating was the possibility of charac

terizing mathematically those numbers which are humanly comput- 

able. In fact, he began his paper with a description of the way 

in which his machine imitates the features of the human brain:

We may compare a man in the process of computing a 
real number to a machine which is only capable of a 
finite number of conditions qi, qo, . . . ,qu , which 
will be called "m-configurations. The machine is 
supplied with a tape (the analogue of paper) running 
through it, and divided into sections (called 
"squares") each capable of bearing a "symbol."
At any moment there is just one square, say the r-th, 
bearing the symbol (r) which is "_in the machine.M 
We may call this square the "scanned square." The 
symbol on the scanned square may be called "the scanned 
symbol." The "scanned symbol" is the only one of 
which the machine is, so to speak, "directly aware." 
However, by altering its m-configuration the machine can 
effectively remember some of the symbols which it has 
"seen" (scanned) previously.^

Turing described the internal states (m-configurations) and

operations of writing and erasing symbols on the paper, and then

^ Alan Turing, "On Computable Numbers," Proceedings of the 
London Mathematical Society, Series 2, 42 (1936-37), 230-265.

2 See Chapter Two for details.
3 "0u Computable Numbers," p. 231.
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concluded:

Some of the symbols written down will form the sequence 
of figures which Is the decimal of the real number which 
is being computed. The others are just rough notes to 
"assist the memory." It will only be these rough .notes 
which will be liable to erasure.

It is my contention that these operations include 
all those which are used in the computation of _a 
number.**

In a later section of the paper,^ Turing returned to the 

comparison of the human computer and his machines to show, by 

direct appeal to intuition, that the machine computable numbers 

are just those humanly computable. For example, he argued that 

the tape should not contain an infinite number of symbols, should 

not scan an infinite number of squares at one time, or contain an 

infinite number of internal configurations because then the 

symbols, concatenations of symbols, or internal configurations 

could vary by only an "arbitrarily small extent"— which would 

contradict the condition of "immediate recognisability" necessary
g

for the human computation of a number. Turing concluded:

We may now construct a machine to do the work of this 
[human] computer. To each state of mind of the [humarQ 
computer corresponds an "m-configuration" of the machine.

^ Ibid., p. 232. Again, my emphasis.

 ̂Section 9.
^ It is interesting that Wittgenstein, who frequented 

Cambridge, had a similar, though more radical, condition of 
"immediate recognisability" at about this same time. See his 
Remarks on the Foundations of Mathematics.
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The machine scans B squares corresponding to Che 
B squares observed by the |human|computer. . . . The 
move which is done, and the succeeding configuration, 
are determined by the scanned symbol and the u-configur- 
ation. . . .  A computing machine can be constructed to 
compute . . . the sequence computed by the |human| 
computer.?

These convictictions led Turing to argue repeatedly with 

von Neumann during the former's matriculation at Princeton and,
g

according to Rosser, left both men determined to build computers 

to test Turing's hypothesis. However, as was described in earlier 

chapters, the war intervened and these plans had to be set aside, 

although both men eventually became involved with calculating 

machinery during the war.

As soon as the war was over Turing was intent upon finding a 

position in which he could design and build a computer. As 

discussed in Chapter Three, he settled upon a position at the 

National Physical Laboratory. During his time at NPL his interest 

in constructing a machine capable of modeling the human thought 

processes bacame more intense. This interest is recorded in the 

paper, "Intelligent Machinery," which he wrote during a year at 

Cambridge while on a sabbatical from NPL.

 ̂Turing, "On Computable Numbers," p. 232.
g

In conversation with Rosser at the University of Wisconsin 
in April, 1979.

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

316

An abstract at the beginning of "Intelligent Machinery"

summarizes Turing's intentions in the paper:

The possible ways in which machinery might be made to 
show intelligent behaviour are discussed. The analogy 
with the human brain is used as a guiding principle. It 
is pointed out that the potentialities of the human 
intelligence can only be realized if suitable education 
is provided. The investigation mainly centres round 
an analogous teaching process applied to machines. The 
idea of an unorganized machine is defined, and it is 
suggested that the infant human cortex is of this 
nature. Simple examples of such machines are given, 
and their education by means of rewards and punishments 
is discussed. In one case the education process is 
carried through until the organization is similar to 
that on an ACE.9

The paper is a marvelous account of Turing's foresightedness
■! tra U a  ** *• *• *•« C C

w  W  J  U W  h O M y  W  A U g y  w  V  U ^ Q i U X O O

common objections to machinery showing intelligent behavior,^ 

thereby arguing the possibility that such machinery can exist. He 

then turned to categorizing the various types and attributes of 

such machinery. All such machinery, Turing argued, is either 

discrete or continuous, controlling (only dealing with infor

mation) or active (producing some definite physical effect).

Thus every machine fits in to one of four categories. For 

example, bulldozers are continuous active, differential analyzers

g Turing, "Intelligent Machinery," p. 3.

^  As Turing elaborated on these arguments in "Computing 
Machinery and Intelligence," a discussion of these arguments 
will be held in abeyance until that paper is discussed below.
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are continuous controlling, and computers, like ACE or ENIAC, 

are discrete controlling. Turing then stated, without argument, 

that although human brains (as machines) are probably continuous 

controlling,

We shall mainly be concerned with discrete controlling 
machinery. As we have mentioned, brains very nearly 
fall into this class, and there seems every reason to 
believe^- that they could have been made to fall 
genuinely into it without any change in their essential 
properties. However, the property of being 'discrete* 
is only an advantage for the theoretical investigator, 
and serves no evolutionary purpose, so we could not 
expect Nature to assist us by producing truly 'discrete* 
brains.12

This categorization allowed Turing to focus on discrete 

controlling machines as his model for the brain. He discussed 

the differences between logical computing machines (e, g., Turing 

machines) and practical computing machines (e.g., ACE), such as 

memory and computing bounds, in a knowledgable, matter-of-fact 

way which reflects his experience building computers at Bletchley 

Park and NPL. Typical of Turing's foresight, he even discussed 

the possibilities of random elements in computers— not to occur 

in practice for many years.

It was at this stage that Turing's thought takes an entirely 
novel direction. He pointed out that all of the machines discussed

^  Which reasons he never mentions.
1 2  t v . ,  CIdiq., p. 6
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so far have been organized for special purposes. He queried,

"What happens when we make up a machine in a comparatively
13unsystematic way from some kind of standard components?"

He called these unorganized machines and created a new mathematical

theory, .similar to the modern theory of network flows, for 
14analyzing them. The aim of Turing's study was purely academic: 

what sorts of machines could be constructed which displayed some 

evidence of artificial intelligence? Turing had no intention of 

using these machines for any specific purposes.

Turing decided the best way to construct a machine displaying 

artificial intelligence was to build a machine which could learn, 

rather than construct a machine with mature reasoning ability.

His plan was to create machines which he could organize to 

parallel the educational development of an infant into a thinking 

adult. He first noted that there was good reason to believe that 

thinking machinery could indeed be:built because it was already 

possible (he claimed) to construct machinery to imitate any small 

part or function of man. However, Turing's aim was not to put 

together a series of machines (each of which carried out one

13 Ibid., p. 9.
^  This technique was taken in part from Goldstine and 

von Neumann's technique of flow diagramming. However, Turing's 
mathematical analysis goes beyond that of Goldstine and von 
Neumann in this regard.
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limited human, activity) which would, as a composite, carry out all

of the human functions. Rather, he was mo3t concerned to

construct an analogue to the human nervous system. With the

advanced state of electronics, Turing was confident of success.

Here we are chiefly interested in the nervous system.
We could produce fairly accurate electrical models to 
copy the behaviour of nerves, but there seems very 
little point in doing so. It would be rather like 
putting a lot of work into cars which walked on legs 
instead of continuing to use wheels. The electrical 
circuits which are used in electronic computing
machinery seem to have the essential properties of
nerves. They are able to transmit information from 
place to place, and also to store it. Certainly the 
nerve has many advantages. It is extremely compact, 
does not wear out (probably for hundreds of years if 
kept in a suitable medium!) and has a very low energy 
consumption. Against these advantages the electronic 
circuits have only one counter-attraction, that of 
speed. This advantage is, however, on such a scale 
that it may possibly outweigh the advantages of the
nerve.15

The outcome of Turing's analysis was: (1) that electronics

technology provides the possibilities for successfully construc

ting a thinking machine; (2 ) that the momentousness of the project 

and the size scale of the machine would make it impractical to 

construct a thinking machine by hooking together a series of 

machines, each able to imitate some small human feature, for 

instance by microphones or mechanical limbs; (3) that even if such

^  Ibid., pp. 12-13.
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a long and impractical project were completed, the machine would 

still lack certain human characteristics, such as interest in 

food, sex and sport; (4) that because of these difficulties and 

because the main concern was with constructing a thinking 

machine, the appropriate approach seemed to be to build a mind 

devoid of body, using electronics to model the nervous system; 

and (5) that useful projects to work on would include building a 

machine which would react the way the brain does to purely 

mental activities, including (Turing explicitly lists): (i)

games like chess or bridge, (ii) learning of languages, (iii) 

translating of languages, (iv) cryptography, and (v) mathematics."

The problem remained, however, of the appropriate approach 

for constructing this electronic brain. One approach might be to 

analyze and categorize the various parts and functions of the 

brain and then to build machines to imitate each of these, in 

the end placing them all together in a composite thinking machine. 

However, this approach seemed liable to the same objections as 

the plan for using microphones for hearing, artificial limbs for 

moving, and such. The composite machine, difficult to build, 

would likely still be lacking certain characteristics of the 

human brain. Only good fortune would guarantee that, at the end 

of this long process of construction, a thinking machine would 

have been created with all of the required features, for there 

was no a priori way of determining an exclusive list of features
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of the human brain.

It was at this point that Turing's novel idea of unorganized 

machines came into play. Turing reasoned that a thinking machine 

should be given the essentially blank mind of an infant rather 

than all of the features common to the adult mind. The trick 

would then be to incorporate a mechanism by which the infant 

electronic brain could be trained in a way analogous to the edu

cation of children. The possibility of such an approach depended 

partly on Turing's analysis of the human cortex:

We believe then that there are large parts of the brain, 
chiefly in the cortex, whose function is largely 
indeterminate. In the infant these parts do not have 
much effect: the effect they have is uncoordinated.
In the adult they have great and purposive effect: 
the form of this effect depends on the training in 
childhood. A large remnant of the random behaviour of 
infancy remains in the adult.

All of this suggests that the cortex of the infant 
is an unorganized machine, which can be organized by 
suitable interference training.

Not only must one begin with an unorganized machine. One 

must also include some method for allowing the machine to be 

changed. Turing believed that humans learn from "interference" 

created by other humans. So he proposed that interference be the 

norm by which computers be educated. He realized, however, that 

only computers which had been allowed to continue operating

16 Ibid., p .  16.
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indefinitely without interference from outside had been considered. 

Thus Turing had to begin from scratch in constructing a theory of 

interference. He isolated two types of interference: "screw

driver interference," by which parts of the machine are removed 

or replaced, and "paper interference," consisting of "mere 

communication of information to the machine, which alters its 

b e h a v i o u r . H e  pointed out that screwdriver interference really 

produces a new machine; so he restricted himself to paper 

interference. Once this was decided he-did additional network 

flow analysis to examine the possibilities of organizing machines 

through interference.

The question of mechanism for organization of the machine 

still remained. Turing again looked to the education of 

children for a clue.

The organization of a machine into a universal 
machine would be most impressive if the arrangements 
or interference involve very few inputs. The training 
of the human child depends largely on a system of 
rewards and punishments, and this suggests that it 
ought to be possible to carry through the organizing 
with only two interfering inputs, one for 'pleasure1 
or 'reward' (R) and the other for 'pain' or 'punish
ment' (P). One can devise a large number of such 
'pleasure-pain' systems. I will use this term to mean 
an unorganized machine of the following general charac
ter: The configurations of the machine are described
by two expressions, which we may call the character- 
expression and the situation-expression. The character

17 T. ..Ibid.. p. 1 1 .
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and situation, at any moment, together with the imput 
signals, determine the character and situation at the 
next moment. The character may be subject to some 
random variation. Pleasure interference has a tendency 
to fix the character, i.e., towards preventing it 
changing, whereas pain stimuli tend to disrupt the 
character, causing features which had become fixed to 
change, or to become again subject to random variation.

To nk...e this vague plan more specific, Turing used his network 

flow techniques to specify a specific, mathematically character

ized "P-type unorganized machine." This machine was a "logical 

computing machine" (as opposed to "practical") with an incomplete 

description. When an internal configuration was reached for which 

the action of the machine was undetermined, the random process 

generator was set in action and recorded tentatively. These 

tentative actions were followed eventually by either a pain 

stimulus, in which case they were all cancelled, or by a pleasure 

stimulus, in which case they were all made permanent. All of 

this was subjected to mathematical precision in this formal 

"P-type" machine.

Turing concluded the paper by calling for an attempt to supply 

not only discipline to the machine, as hie scheme called for, but 

also for initiative— one of those intangibles that characterize 

living beings and is so hard to include in a machine. This was a 
call for help or wishful thinking, as he gave no indication how

18 Ibid.. p. 17.
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this task might be fulfilled.

Turing's move to Manchester redounded in attempts to further 

his drive for a thinking machine, for at Manchester he soon had 

a working, powerful computer which he was able to program so as 

to attempt, albeit on a very limited scale, to test his ideas 

about training an unorganized machine to think. In fact, having 

a powerful new computer at his disposal to test his learning 

machine theory helps to explain why he would leave NPL before the 

computer he designed (ACE) was completed. The spirit and program 

of his work at this time were captured in his famous, popular, 

philosophical tract published in Mind, in 1950, entitled "Computing 

Machinery and Intelligence."

This paper is best viewed as a continuation of the earlier 

paper, "Intelligent Machinery," reflecting, especially, on the 

experiments Turing had been able to perform on the Manchester 

computer. Although it addressed essentially all of the issues 

of the earlier "Intelligent Machinery," there were two significant 

new developments: a clear focus on behaviorist philosophy, which

was implicit in all of Turing's previous work on thinking machines; 

and a systematic, detailed rebuttal of all of the objections to 

the possible existence of thinking machines which he had discussed 

piecemeal and in passing In his earlier works.

"Intelligent Machinery" is based upon the experiment Turing 

called the "imitation game." An interrogator is separated from
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a man and a machine and is allowed to ask them questions. From 

these questions the interrogator is to determine which answerer 

is the human and which the machine. By "machine" is meant an 

electronic digital computer. The interrogator is allowed to ask 

questions concerning intellectual, but not physical, properties. 

Turing argued that he could adequately answer the vague question 

"can machines think?" by answering the determinate question 

"are there imaginable digital computers which would do well in 

the imitation game?" In so doing, Turing exhibited his behaviorist 

philosophy. A machine was considered to think if its behavior 

was such that it could not be distinguished from the mental 

behavior of men. Thinking, for example, did not refer, in Turing's 

opinion, to such an inaccessible property as consciousness.

Matters of thought were only to be decided on attributes which 

were observable— of observable behavior. Not only did this 

philosophical view provide a criterion for when a machine thinks, 

it also provided a vantage on how to build thinking machines—  

entirely consistent with his actual attempts at Manchester. For 

example, there was no need to make the internal workings of the 

machine actually parallel the internal workings of the human 

mind, just as long as the machine provided answers to questions
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19of it In the way that a thinking man would if so queried.

Turing then used the format of the imitation game to refute 

various arguments that machines were unable to think. The 

arguments, given together with his refutations, were as follows:

(1) Theological objection: Thinking is a function of man's

immortal soul, and God has given this soul only to man. There

fore, machines do not have the capacity to think. Rather than 

assault this argument directly, Turing pointed out the inconsis

tency among religious beliefs as evidence that man cannot determine 

from theology a certain position on thinking faculties. Turing 
also argued that theological arguments are unsatisfactory in any 

account on historical and scientific grounds.

(2) "Heads in the sand" Objection: The consequences of

machines which can think are so dreadful that we should not consider 

the possibility, but simply hope for the best, Turing pointed out 

that no refutation is needed to this argument— that it is emotion

al, not rational.

(3) Mathematical Objection: Gtidel's incompleteness theorem

and similar results demonstrate the limitations of any discrete

19 It has already been discussed why we need not provide 
exact analogies of the human nerves in our machines. On the 
other hand, in his paper on computable numbers, the Turing machines 
are designed as exact mental, but not physical, analogues of the 
brain when computing numbers. Turing would probably argue that 
this similarity between man and Turing machine here simply reflects 
the logical constituents involved in computing a number.
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state machines. Turing's response was:

. . . although it is established that there are limita- 
. tions to the powers of any particular machine* it has 
only been stated, without any sort of proof, that no such 
limitations apply to the human intellect. . . . Further, 
our superiority can only be felt on such an occasion in 
relation to the one machine over which we have scored 
our petty triumph. There would be no question of 
triumphing simultaneously over all machines. In short, 
then, there might be men cleverer than any given machine, 
but then again there might be other machines cleverer 
again, and so on.20

(4) Argument from Consciousness: Machines do not have the

consciousness to write, say, a sonnet according to their emotions, 

except by a chance manipulation of symbols. This lack of con

sciousness demonstrated that machines can not think. Turing 

argued that this is a solipsist position which, although logically

neat, was generally avoided in philosophy because it closed off
21any possible communication.

(5) Arguments from Various Disabilities: "I grant you that 

you can make machines do all the things you have mentioned, but 

you will never be able to make one do X," for various X including: 

be kind, fall in love, enjoy strawberries and cream, learn from

20 "Computing Machinery and Intelligence," p. 445.
21 It is clear that tne hehavior of different men is suffi

ciently alike, and that their behavior is sufficiently unlike the 
behavior of machines to argue that there is a difference between 
men and machines. Thus, it might be reasonable to accept the 
consciousness of other men, but not of machines. This is the 
least reasoned of Turing's refutations.
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experience, do something really new. Turing attacked this 

position in several ways. First, he pointed cut that the only 

basis that people have to hold any one of these positions is 

by induction on their experiences with humans and with machines, 

and then referred to all of the philosophical discussion of the 

inadequacy of induction as an acceptable methodological principle. 

Second, he pointed out that he could design mechanisms which 

could do any one of the tasks mentioned above. Third, he argued 

that when, for example, if a critic were to complain that a 

machine he had designed did not "really enjoy" strawberries and 

cream the way in which a human does, the critic would be arguing 

unfairly— that the critic* s obj ection would be post hoc and that 

his machine would have satisfied the requirements set by the 

critic if judged according to Turing*s behaviorist principles. 

Fourth, in passing, Turing discussed futuristic possibilities of 

machines programming themselves to show that machines could do 

something "really new."

(6) Lady Lovelace*s Objection: The machine ["Babbage's

Analytical Engine] "has no pretensions to originate anything.

It can do whatever we know how to order it to perform." Turing 

made several points against this position: First, although

possibly what Lovelace said is true about Babbage's Analytical 

Engine, there is no reasou to believe there could not be some 

other machine capable of original thought. Second, even the
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Analytical Engine could mimic any machine in question if provided 

with the suitable programming. Third, the premise behind this 

rejection (that once one knows something, one knows all of its 

consequences) is false. This was evident in mathematics, for 

example, where one has to work hard to attempt to find the 

consequences of an axiom system. Fourth, there is no way of 

knowing whether men, themselves, can originate anything. Perhaps 

every thought is implanted from previous teachings.

(7) Argument from continuity in the nervous system; The 

nervous system is not a discrete-state machine. Hence, it can not 

be mimicked by a discrete-state machine. Turing argued that this 

criticism has no bearing on the interrogation game and therefore, 

according to his behaviorist model, had no bearing on the pos

sibility of thinking machines.

(8 ) Argument from the Informality of Behaviour: Men do not 

operate according to a fully determined set of rules, while 

machines do. Therefore, machines do not have the flexibility and 

spontaneity of human thought. First, Turing demonstrated that 

there is a logical flaw (undistributed middle) in che argument, 

which becomes apparent when it is formulated as a syllogism:

If each man had a definite set of rules of conduct by 

which he regulated his life, he would be uo better than 

a machine.

There are no such rules.
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Therefore, men cannot be machines.

Second, Turing observed that this argument did not make the 

important distinction between "rules of conduct" (such as "stop 

upon seeing a red light when driving") and "laws of behaviour" 

(such as "if you pinch him, he will squeak"). Moreover, scien

tific observation, he argued, is not sufficient to determine the 

absence of laws of behavior. For example, he claimed that he had 

fairly simple programs for MADAM for which scientific observation 

was incapable of determining the laws of behavior— although they 

did exist. Therefore, the second premise in the syllogism would 

also remain unfounded.

(9) The Argument from Extra-Sensory Perception: Humans

have extra-sensory abilities such as clairvoyance, telepathy, 

pre-cognition, and psycho-kinesis which the machine cannot 

imitate. Turing stated that he did not understand the point very 

well, but that he did know that ESP preempted the ordinary laws 

of nature and that there is no way of foretelling what would 

happen in the imitation game or any other ordinary situation if 

ESP were involved.

Turing explicitly stated that he had no direct arguments to 

convince his critics of his views on thinking machines. His 

intention was to develop computer facilities capable of exhibiting 

the thinking properties he believed a machine could have. To 

that end, he used MADAM at Manchester as a rudimentary percursor
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of his ideal thinking machine. Turing's responsibilities at

Manchester consisted mainly of the programming of MADAM, and

included were programs teaching MADAM to play chess. However,

Turing realized how far technology was from his goal of an

adequate thinking machine. He estimated that even if visual

retention was not required of his machine, a memory would be
9required on the order of 1 0 storage units— two orders of

magnitude greater than current technology could provide. The

almost insurmountable problem he foresaw, however, was the

programming of such a machine. He estimated that it would take

sixty programmers fifty years of errorless work to complete the

programming of a thinking machine. So Turing returned to his

dream of constructing an unorganized mind which could be educated
22through constructive interference.

Turing provided more to the development of the theoretical 

information sciences than just his many arguments for the 

similar functioning of the nervous system of the brain and 

computing machinery. His invention of the Turing machine became 

the most celebrated achievement of early automata theory, for the 

Turing machine provided a theoretical model of the physical 

automata, with all of the same theoretical possibilities and

22 In fact, Turing did some experiments concerning such a 
"child machine," but the unorthodoxy stood in the way of success.
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limitations, but with none of the physical limitations peculiar 

to any particular physical machine. In fact, Turing's 1936 paper 

on computable numbers introduced many of the ideas fundamental in 

the development of automata theory.

Turing machines are not physical machines at all. They are 

paper machines whose fundamental components, operations, and 

programming have been described in a precise mathematical 

fashion, but which do not present any physical mechanism for 

carrying out these functions and operations. In fact, this is 

the most important aspect of the machines. In dealing with these 

machines, Turing characterized the basic functions and operations 

of a wide spectrum of mechanical computing devices which vary 

essentially only in their physical mechanisms, their capacity to 

store information, and their speed of operation.

What Turing machines do, in effect, is give a schematic 

picture of the logically necessary parts of a computing device and 

its operation: the necessary conponents of the device itself,

the possible and impossible uses of such devices, the procedures 

necessary to a device carrying out such tasks, and the communi

cation channels between the device and the outside world- Although 

Turing never explicitly stated in the 1936 paper what the logi

cally necessary physical components of a computing machine were, 

one can easily abstract from the description of his machine 

(which is intended to incorporate only the essential properties of
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computing a number) the essential features of any such computing 

machine. They include the following:

(i) Some input and output equipment which transmits infor

mation to and from the computing device. In the case of the 

Turing machine it is the paper tape upon which information is 

read to the machine. It is the same paper tape upon which 

information is returned from the machine (albeit possibly in a 

different code).

(ii) A place for storing information either introduced from 

outside the machine or created by the machine itself in the 

process of computing. The cells of the paper tape not being 

scanned at the moment by the machine played this role for Turing.

(iii) A place for the machine to do its computation.

Turing considered this to be the analogue of the human computer's 

scratch paper. In his machine the "scratch paper" consisted of 

the cells of the paper tape.

(iv) A device for recording information within the machine—  

the analogue of the human computer's pencil. The device in the 
Turing machine was the one which either wrote or erased a stroke 

in the scanned square.

(v) A reader which "reads" the information provided to the 

machine. This was performed in the Turing machine by the vaguely 

described equipment which scanned the cell of the paper tape in 

the machine at any instant ("the scanned square").
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(vi) A mechanism (called by Babbage "the mill") which does 

the physical manipulation of the information. Perhaps the 

recording device (iv) could be considered as part of the "mill."

In Turing's machine the mechanism which moved the tape left and 

right and possibly the recording device constituted the "mill."

(vii) A controlling device which directs the reader, 

recorder, mill, input, and output when and how to operate. In the 

case of the Turing machine the control consisted of a set of rules 

built into the machine which regulated the way in which it acted 

and a set of internal states which, together with the information 

in the reader, determined which rule was in effect.

By examining the 1936 paper one can determine not only the 

necessary components of a computing machine, but- also the way in 

which these components operate to perform their computations.

In Turing's machine, information to be coded into numerical systems 

comprehensible to the machine was of two kinds: numerical data

upon which the machine was to compute, and instructions as to 

which operations the machine was to carry out on the numerical 

data. These instructions could either be pre-programmed into the 

machine, in which case the Turing machine was a special purpose 

machine capable only of carrying out that one pre-programmed task. 

Alternatively, the instructions could be entered on the paper
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tape (in the same way the numerical data was) to a universal 
23machine, which would make the universal machine carry out this 

one specific activity for this particular input.

Once the information was entered into the machine, the reader 

would examine part of the information (the rest of the information 

being stored on part of the paper tape not being examined by the 

reader at the time). The reader would report the information 

on the scanned square to the control. Depending on the information 

in the scanned square and the "internal configuration" of the 

machine, the control would choose one of the rules programmed 

into the machine. The control would then send the order to the 

mill to print or erase or possibly to move the tape one cell to 

the left or right. The reader would examine the new "scanned 

square," send a report to the control, whereupon the procedure 

would be carried out again. This routine would be repeated until 

the control ordered the machine to stop. Then, using the appro

priate coding, the information could be read off of the paper 
tape as output.

While the mechanics in a physical computer's computation 

might differ from the mechanics of computation in a Turing machine,

23 The universal machine is discussed in detail in Chapter
Two.
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essentially the same functional process would obtain in both 

cases in the transaction of a computation. The same logically 

necessary parts and operations must occur in the physical as well 

as in the theoretical automata. Moreover, the Turing machines 

exhibited the theoretical range of computation. If a certain 

computation could be carried out by a Turing machine, it could be 

carried out by a physical machine— although, for practical purposes, 

the computation might be prohibitively long or costly to be 

feasible. Similarly, if no Turing machine were capable of carrying 

out a particular computation, then no physical machine could be

devised to carry out the computation. Thus, the theoretical

bounds for physical computation were established. Now it was only 

necessary to consider the (crucial, but merely practical) bounds 

to physical computation.

It was this fact that made Turing's paper so important to the

development of a theory of automata. Automata theory is the

mathematical study of operation of the computation of functions.
2AAs one source "r defines the subject:

Much of mathematics studies functions, rules 
f:X-*Y for assigning to each element s of the set X 
an element f(x) of the set Y. In computer science 
we seek to realize functions by computations, which are 
sequences of data manipulations under the control of a 
program. Programs are run by machines. In specifying 
a machine we have to specify the syntax, or legitimate 
forms, for the data structures that may occur as input

24 Encyclopedia of Computer Science, 1975.
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to the machine, as descriptions of the internal state 
of the machine, and as output from the machine. A 
program must be so presented as input structure that
it will be incorporated into the internal state struc
ture in a fashion that will cause the machine to process 
data in such a way as to realize some given function.
The semantics of the machine direct how it will change 
state, read input and provide output at each stage, and 
thus determine how the program will be interpreted.

Automata theory is the mathematical study of questions 
of realization, decomposition, simulation, complexity, 
and computation abstracted from the above considerations.

Turing's 1936 paper is the beginning of automata theory because 

the Turing machine was the first mathematically precise character

ization of a machine which would carry out the operations described

in the above paragraph. In his account Turing explicitly discussed

the syntax of the tape and m-configurations (internal state) 

and the semantics which directed the operation of the machine at 

each moment dependent on the m-configuration and scanned square.

The 1936 paper included other results of importance in

automata theory besides the definition of the Turing machine. It

included a discussion of the various types of functions which could

and could not be computed. In carrying out this discussion,

Turing applied many results from mathematical logic to the question
25of computability of functions. Today, these questions of com

putability are often rephrased in terms of questions about formal 

grammars, due to the importance of GBdel's work on formal systems,

2 5 Actuall”, to the computability of decimal numbers.
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Chomsky's work on. formal grammars, and the development of pro

gramming languages. Of particular concern are two questions:

(a) which languages a particular automaton can recognize, 

i.e., for a given string of symbols can the automaton determine 

whether or not they are grammatical members of a given formal 

language; in other words, is there a computable function which is 

1 for the code number of grammatical members of the formal 

language, and 0 otherwise;

(b) which languages a particular automaton can generate, 

i.e., which languages can have their grammatical strings of 

symbols as the output of a particular automaton; in other words, 

is there a computable function which will give as output the code 

numbers of the grammatical strings of symbols.

Here is a survey of results Turing drew from mathematical
26logic on the question of computability.

(1) GBdel coding. GBdel coding, which was originally 

developed for the incompleteness theorem, was used by Turing for 

the input and output of both instructions and data for his Turing 
machines. It provided a way of coding languages so that they 

could be the input or output of a machine which only accepted

26 Although Turing did not phrase his results precisely this 
way in terms of formal grammars, it has been arranged this way 
here to compare his results with the modern theory of automata.
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numerical data. The GBdel number of a particular string of 

symbols in a formal language could be put into a Turing machine as 

argument of the characteristic function for the grammatical 

strings of a particular language (what the Turing machine is 

programmed to do). Similarly, the various GHdel numbers of the 

grammatical strings of a formal language that' could -be-printed as 

output as 1,2,3,... were entered as input into a Turing machine 

programmed to be the language generator for a particular formal 

language.

(2) Recursive unsolvability of the halting problem.

The halting problem asks: Given a Turing machine in an arbitrary

configuration with an arbitrary finite amount of information in 

the machine, will the Turing machine eventually halt (complete its 

computation)? Turing showed that this problem is recursively 

unsolvable, i.e., he showed there is no Turing machine R which, 

given the description of a particular Turing machine S , its 

internal configuration, and the state of the data in it, will 

always provide a "yes" or "no" answer as to whether S will halt. 

This was because, as Turing proved, for any candidate for R , 

there is a relevant input (the GBdel number of some machine S 

and its internal configuration and state of its data) for which 

R will not halt.

It Is clear how this is relevant to automata theory. If the 

result were applied to those Turing machines which are F-generators
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or F-recognizers (for some formal language F), then there would be 

no guarantee for all such Turing machines (although there might 

be for any particular machine) that the machine will ever decide 

whether a particular string (appropriately Gtidel coded) is a 

grammatical string in Language F or, alternatively, whether the 

Turing machine can halt in generating the nth grammatical string 

in the formal language.

(3) The Negative solution of the Entscheidungsproblem. 

Recursion theorists were quick to realize that the halting problem 

was useful in showing the recursive unsolvability of a variety 

of problems. Instead of showing directly that some problem P 

is recursively unsolvable (i.e., that there is no Turing machine 

which solves it), many showed that a problem P in question could 

be reduced to solving the halting problem and, since the halting 

problem was recursively unsolvable, then so was problem P .

This led to the study of relative recursiveness, where A is 

recursive relative to B if the recursiveness of B implies the 

recursiveness of A .

Turing used this technique of relative recursiveness with the 

halting problem to demonstrate the recursive unsolvability of the 

Entscheidungsproblem. That is, Turing showed that there is no 

Turing machine which will recognize the provable formulas in a 

formal logical system. While this result was of momentous 

importance in the foundations of mathematics, it also had a

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

341

different but important role in automata theory. It provided the

first real example of a result in automata theory and thereby set

out the type of problem to be attacked and the method to be used.

That is, a logical system is a type of formal language, and in such

a system the provable theorems correspond to the grammatical

strings. Thus, in showing the recursive unsolvability of the

Entscheidungsproblem, Turing had shown that there is no Turing

machine which will recognize the grammatical strings in one

particular formal language (predicate calculus with equality).

This became the model for later results.

(4) Recursive enumerability.

In the 1936 paper Turing also discussed recursive enumerability.

In particular, he discussed the possibility of enumerating the

computable sequences. He showed that the problem of enumerating

the computable sequences is equivalent to the problem of finding

out whether a given number is the description of a circle-free 
27machine and that, by applying the diagonal process

A circle-free machine is, in modem parlance, a machine 
with no infinite loops.
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2gargument, one can show that there cannot be any such general 

process. Turing briefly discussed as well the possible uses and 

misuses of the diagonal process in determining the enumerability 

of particular sets. This approach has been used to great effect 

in automata theory in determining which sets of grammatical 

strings could possibly be enumerated recursively and has sub

sequently led to the identification of Turing machines with
29languages generated by type 0 grammars, an important concept 

in modem automata theory.

28 If a series is doubly indexed by the positive integers, 
for example:

^ 1 1 a 12 a13 a14

a21> \ ^ 2 2 a23 a24

a31 a32ss^33 a34

a41 a42 a43sVa44
then the diagonal process chooses the sequence a^n a3 3 > *** 
The diagonal process was used for the first time'oy Cantor xn 
showing that the real numbers were not denumerable. However, it 
later became an extensively used technique in recursion theory to 
show the existence of various types of functions which were not 
recursive.

29 A type 0 grammar is the weakest, least restricted sort 
of grammar, A grammar is a four-tuple 0 ( V N,Vx ,P,S), where 
VN and Vx are disjoint finite sets, P is a finite subset of 
(VNvVx)~x (VfluVx) , and S€V^ . Vjj is called the non-terminal 
vocabulary (elements are called metavariables or syntactic 
classes), Vx is called the terminal vocabulary, P is called 
the set of productions, and S is the start symbol. For sore 
details, see Hopcroft and Ullman, Formal Languages and Their 
Relation to Automata.
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(5) Variations on the Turing machine.

In the 1936 paper Turing considered the possibility of alterations 

on his machine. In particular, he discussed the possibilities 

of multiple tapes or two-dimensional tapes (like ordinary scrap 

paper). His conclusion, although not proved, was that these 

additions to his basic machine provide no theoretical increase 

in computing power over the standard Turing machine. Turing also 

mentioned in passing the possibility of non-deterministic 

Turing machines, where the choice of operation at any step in the 

computation is not always completely determined and may be 

chosen at times arbitrarily from some (usually finite) set. This 

showed the foresightedness and intuition of Turing. The study of 

various types of Turing machines has held a major share of the 

interest in automata theory and it has been shown that, as Turing 

believed, most alterations of the basic Turing machine do not 

alter the theoretical computing power. Turing was also fore

sightful in recognizing the interest in non-deterministic Turing 

machines. ̂

30 Turing's intuitions about the lack of change in making a 
Turing machine non-deterministic also were correct, for it has 
been shown that if a non-deterministic machine accepts some formal 
language L , then there is some deterministic Turing machine which 
also accepts the language— where "accepts" means that the machine 
halts with encoded members of the language as input.
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(6) Universal Machines.

Perhaps the most important single novelty of Turing machines 

described in the 1936 paper were the universal machines. A

universal machine is a machine which can be fed not only data to

process, but also rules governing operations which can make it 

act like any particular Turing machine. At the beginning of 

§6 of his paper Turing describes his idea for a universal Turing 

machine:

It is possible to invent a single machine which can 
be used to compute any computable sequence. If this 
machine U is supplied with a tape on the beginning of 
which is written the S.D. [standard description] of 
some computing machine M , then U will compute the 
same sequence as M . . . .

The manner of operation of M' [a. machine which will
write down the configuration of M J could be make to
depend on having the rules of operation (i.e., the S.D.) 
of M written somewhere within itself (i.e., within 
M' ); each step could be carried out by referring to 
these rules. We have only to regard the rules as being 
capable of being taken out and exchanged for others and 
we have something very akin to the universal machine.

Turing pointed out how M* could be modified to print out figures

and to do the "scratch work" necessary to do computations. All

of this discussion was ancillary to a technical description of a

universal Turing machine, which is given in §7 by breaking down

the programming into subroutines and giving a technical description

of each part. Apparently, Turing believed that such a machine
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would be unpractically large— although today this belief has been
31shown to be incorrect.

Turing's universal machine provided the first instance of an

interpretive routine; this is "a computer program that performs

the instructions of another program, where the other program is

written in some machine-like language. By a machine-like

language, we mean some way of representing instructions having,
32say, operation codes, addresses, etc." These interpretive 

machines were used at first as ways of translating machine lan

guage into more tractable languages for programming. Programming 

languages have outmoded this technique; however, interpretive 

machines have established their place in the computer industry 

and are used even today.

The greatest importance of the universal Turing machine, 

however, was not as an interpreter, but as the prototype of the 

general purpose computer. In the tradition of Babbage's 

Analytical F ine, Turing's universal machine was designed to 

perform any computation possible on any Turing-like machine.

No longer was it necessary to have a special machine for each 

special operation. This was among the most important ideas

31 See Jeremy Bernstein, "Calculators: Self-Replications"
in Experiencing Science.

32 Knuth, op. clt., p. 197.
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behind the development of a new generation of high-powered 

electronic digital computers in the 1940*s and 1950rs. It was 

what made programming possible. Certain basic machine operations 

could be concatenated and put into effect in various ways deter

mined by the instructions put into the universal machine to 

reproduce in effect any particular Turing machine. This corre

sponds to the programming from basic operations into more compli

cated operations capable in the general, automatic, stored 

program computer. In fact, the universal Turing machine provided 

the theoretical characterization of stored programming, for it 

was able to process instructions as well as data in order to alter 

instructions in the middle of a computation.

The universal Turing machine was also important in recursion

theory and automata theory. In both fields, the universal machine

provides a convenient and powerful way of describing the power of

all the Turing machines at once and showed that one mechanical

device can do all of the different types of computations capable

of human computers. However, the existence of a universal machine

showed more than this:

It shows that, for computing partial functions of one 
variable, there is a critical degree of "mechanical 
complexity (that of P2 [the universal machine]) beyond
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which all further complexity can. be absorbed into 
increased size of program and increased use of memory 
stage.33

Von Neumann developed a theory of complexity around this fact—  

as will be discussed in the next chapter.

In retrospect, Turing made important contributions in three 

broad areas toward the development of a theory of information 

processing: technical contributions to the theory of automata,

arguments for the possibility of artificial intelligence, and a 

general characterization of both brains and computers as types of 

computing automata.

Turing offered many different arguments that machines can 

think and made many attempts to build examples of artificial 

intelligence. Most important among these attempts were his plan 

for teaching unorganized machines to think by "constructive 

interference," his plan for testing his artificial intelligence 

thesis by programming existing computing machinery to carry out 

purely mental activities such as chess-playing or language learning, 

his behaviorist methodology for studying artificial intelligence 

in terms of the imitation game, and his coherent and systematic

33 Hartley Rogers. Theory of Recursive Functions and 
Effective Computability, p. 23.
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rebuttal of all the objections to the possibility of thinking 

machines.

This vociferously argued belief that machines can think 

was important toward convincing people of the strong similarity 

between the functioning of the computer and the human nervous 

system. The Turing machine provided an abstract model equally 

applicable to the functional process carried out by the brain 

or by the computer. This allowed Turing to provide a schemati

ze t ion of the basic functional processes of computing and the 

basic components of any computing automaton.

Turing also made more techincal contributions by suggesting or 

giving examples of how technical results from mathematical 

logic could be applied to the theory of automata. Turing machines 

provided the starting point for automata theory because they 

provided a theoretical characterization of physical automata 

without any of the physical limitations peculiar to any particular 

machine. Turing was the first to attempt to mathematically 

examine computable functions in terms of a mathematically 

precise, theoretical machine— a technique which was to later 

become common in automata theory. He was the first to illustrate 

the applicability of logical results and techniques— in particular, 

G8del coding, recursive unsoivability of the halting program, 

the negative solution of the Entscheidungsproblem, recursive 

enumerability, and universal machines— to the theory of automata.
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He was the first to contemplate the possible ways of varying the 

Turing machine (randomizers, multiple tapes, multi-dimensional 

tapes) to establish the relation of these variations to the power 

of computing.

Unfortunately, Turing never attempted to organize these 

various and fecund ideas into either a coherent theory of 

artificial intelligence or of automata. While his 1936 paper sug

gested a number of important ideas for both automata theory and 

artificial intelligence, he never pursued the consequences of 

these ideas. Although he carried out a number of experiments at 

Manchester to support his beliefs about artificial intelligence 

and though he had the imitation game as the basis for a theory of 

artificial intelligence, he never felt compelled to suggest (at 

least in writing or, in any clear way, to his colleagues) a 

program to be carried out to develop his ideas which would show 

how his work fit in and what specific projects should be carried 

out in the future. He was an amateur at his research and did not 

try to organize it in any systematic way so that others could work 

within a mutual framework on joint problems with him.

It will be shown in the uext chapter that this is in direct 

contrast with von Neumann's approach. He attempted to use 

Turing's work on theoretical machines, Shannon's work on communi

cation, and McCulloch and Pitts' work on the brain as the 

theoretical basis for a theory of automata, bogie, applied
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mathematics, and probability were used by von Neumann to turn a 

series of loosely related engineering results into a science of 

computing, including studies of the logical structure of computing 

machines, the theoretical principles of computing, and how 

to affect them with physical equipment.

Thus, even if Turing, himself, did not develop his automata 

ideas, von Neumann used them in his science of computing and, in 

particular, in part of it known as the theory of automata.

Turing's technical applications of logic were also picked up in 

the 1950's and 1960’s by theoretical computer scientists who 

developed them into the theory of automata. Turing's work on 

artificial intelligence was well known, and the imitation idea 

was much discussed (especially by philosophers), but the actual 

effect (other than inspirational) he had on the specific projects 

in artificial intelligence seems minimal. In particular, no one 

picked up directly on his "constructive interference" idea, nor 

did any experimental computer scientist make the imitation game 

the basic tool of his research. However, his arguments for the 

possibility of artificial intelligence were among the earliest 

stated, seemed to have been popular, and were perhaps persuasive 

in breaking down barriers against "artificial intelligence."

(As the name implies, it is still something thought of as cate

gorically different from human thinking.) Perhaps if Turing had 

lived longer automata theory and artificial intelligence would
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Chapter Seven: Von Neumann's Contribution
to Theoretical Computer Science:
His Theory of Automata

Von Neumann's major contribution to the conceptual revolu
tion in the field of information processing was the development of 
his theory of automata. This theory was developed near the end of 
his career, after he had had significant experience with mathe
matical logic, mathematical physics, and with the development of 
physical computing equipment. Von Neumann seems to have begun 
considering questions about the theory of automata before the 
second world war, through his interactions with Turing concerning 

the possibility of using Turing machines to simulate thought. 
However, von Neumann's sustained and serious attempt to develop a 
detailed theory of automata dates only from 1948 until his death 
in 1957.

The Program for a General Theory of Automata

Five extant documents contain von Neumann's thoughts on the

352
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theory of automata:
(1) "The General and Logical Theory of Automata," read at 

the Hixon Symposium on September 20, 1948, in Pasadena, California. 
The paper was published in 1951 and is contained in von Neumann's 
Collected Works (V.288-328).

(2) "Theory and Organization of Complicated Automata,"
a series of five lectures delivered at the University of Illinois 

in December, 1949. Edited by Arthur Burks, they comprise the first 
half of von Neumann's Theory of Self-Reproducing Automata, 
pp. 29-87.

(3) "Probabilistic Logics and the Synthesis of Reliable 
Organisms from Unreliable Components," based on notes taken by 
Dr. R. S. Pierce of von Neumann's lectures in January, 1952 at 
the California Institute of Technology. These are contained in 
von Neumann's Collected Works (V.329-378).

(4) "The Theory of Automata: Construction, Reproduction,
Homogeneity," a manuscript written by von Neumann in 1952 and 
1953, edited by Arthur Burks, and included as the second half of 
Theory of Self-Reproducing Automata, pp. 89-380.

(5) The Computer and the Brain, a series of lectures which 
von Neumann intended to deliver at the Silliman Lectures at Yale 
University in 1956, but which the illness that terminated his life 
precluded. The completed fragments of the lectures were published 
in book form posthumously in 1958.
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Automata theory is a field essentially created by von Neumann. 

There was no standard literature before von Neumann, and there were 
no predetermened topics or questions. Thus, von Neumann was left 
to develop the material as he wished. In the five publications 
noted above, von Neumann attempted to develop a comprehensive 
theory which would unify the study of computing machines and living 
organisms under one theory of information processing equipment.

In doing this, von Neumann discussed the following issues: the
logical structure of the functioning of the information processing 
equipment; the differences and similarities of components and 
overall systems in artificial and natural information processers; 
the purposes and uses of artificial processing equipment and the 
ways in which they could be conjoined with natural systems; 
the notion of complexity and its ramifications for information 
processing systems; the relation of reproducing, but especially 
self-reproducing, automata to self-replication in natural organ
isms; the problem of reliability in a system having unreliable 
components (and the difference in philosophy between natural and 
artificial systems for developing reliability); and the possible 
applications of this theory to the construction of computing 
machinery. These issues were discussed both in a general, 

informal way (especially in the Hixon Symposium) and within the 
context of a formal, mathematical theory (developed in his next 
three works on the subject).
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A. definite progression of ideas can be seen in von Neumann's 
five papers. The first paper, "The General and Logical Theory of 
Automata," was a short paper which was given in one lecture. In 
this paper von Neumann introduced all of the major issues which 
he examined in his theory of automata (as listed above), but 
did little more than initiate the discussion, marshall the most 
basic of facts, and indicate what needed to be done in the future.

The second publication, "Theory and Organization of Compli
cated Automata," was broken into five lectures. In the first 
two lectures von Neumann repeated the general comments that he had 
made in "The General and Logical Theory of Automata"— although he 
did seem to have a better grasp on his subject by this time, 
which comes across in better organization, more developed arguments, 
and more specific programs to be carried out in the future. The 
third lecture von Neumann devoted to statistical theories of 
information, for he argued that it is only through probability 
and statistics that one can develop an automata theory that will 
deal adequately with the realistic assumption that components of 
information systems are unreliable. The last two lectures were 
devoted to one of the most important concerns of von Neumann's 
theory of automata: complicated automata. Von Neumann was
interested in a theory of automata which would adequately explain 
the human nervous system, the large and fast computers being 
designed during his day, and automata capable of self-reproduction
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— like humana and, he hoped, some day artificial automata. All 

of these were extremely complicated. Von Neumann hoped to deter
mine what was meant by “complexity" in such systems and what effect, 
if any, it had on such systems.

In the third lecture of "Theory and Organization of Compli

cated Automata," von Neumann argued that a statistical and proba
bilistic theory was needed for the study of the reliability of 
machines incorporating unreliable components. "Probabilistic 
Logics and the Syntnesis of Reliable Organisms from Unreliable 
Components" provided that theory. In this paper von Neumann 
first extended first order mathematical logic to a probabilistic 
system which could deal with such automata as Turing's universal 
machine and McCulloch and Pitts' neural networks- He then 
proved that a technique that he had suggested in "Theory and 
Organization of Complicated Automata" for making a system con
taining unreliable components reliable to any degree of accuracy 
actually worked as he suggested that it would.

In the fifth lecture of "Theory and Organization of Com
plicated Automata: von Neumann provided a sketch of an axiomatic 
model of a mechanical device which would self-reproduce and showed 
mathematically that there was nothing contradictory about such a 
machine. In "The Theory of Automata: Construction, Reproduction,
Homogeneity" von Neumann provided four additional biological 
models of self-reproducing automata, together with discussion
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of their similarity to the reproductive rules carried in the human 
genetic system.

In The Computer and the Brain von Neumann collected all of 
the comparisons that he had made between natural and artificial 
systems in the other four works on automata theory and presented 
a coherent explanation of the similarities and differences in the 
functioning of the computer and the brain as information processors.

The Logical Theory of Automata

Von Neumann1 s ultimate aim in automata theory was to develop

a precise mathematical theory which would compare computers and the
human nervous system. His aim was not to study the particular
mechanical devices or physiological devices which carry out the
information processing, but only to study the structure and
functioning of the entire system.

The organisms can be viewed as made up of parts which 
to a certain extent are independent, elementary units.
We may, therefore, to this extent, view as the first 
part of the problem the structure and functioning of 
such elementary units individually. The second part of 
the problem consists of understanding how these elements 
are organized"into a whole, and how the functioning of
the whole is expressed in terms of these elements.

The first part of the problem is at present the 
dominant one in physiology. It is closely connected 
with the most difficult chapters of organic chemistry 
and of physical chemistry, and may in due course be 
greatly helped by quantum mechanics. I have little 
qualifIcation to talk about it, and it is not this part 
with which I shall concern myself here.
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The second part, on the other hand, is the one 
which is likely to attract those of us who have the 
background and the tastes of a mathematician or a 
logician. With this attitude, we will be inclined to 
remove the first part of the problem by the process of 
axiomatization, and concentrate on the second one.̂ -

Von Neumann treated the workings of the individual components of

the systems, whether natural or artificial, as "black boxes,"
devices which work in a certain way (specified by axioms), but
whose internal mechanism was unknown (and need not be known for
these purposes).

Axiomatizing the behavior of the elements means this:
We assume that the elements have certain well-defined, 
outside, functional characteristics; that is, they are 
to be treated as "black boxes". They are viewed as 
automatisms, the inner structure of which need not be 
disclosed, but which are assumed to react to certain 
unambiguously defined stimuli, by certain unambiguously 
defined responses.^

He then proceeded to point out that this axiomatic approach, like 
any axiomatic approach in applied mathematics, had certain ad
vantages and disadvantages. On the positive side, all situations 
were idealized and the various components were assumed to act 
universally in a precise, clear-cut manner. This allowed a study 
of the highly complicated behavior of organisms like computers

 ̂For the remainder of this chapter, GALTA will signify 
"General and Logical Theory of Automata."

1 GALTA, p. 289.
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or human nervous systems which would be impossible unless such 
regularities and simplifications were assumed.

This being understood, we may then investigate the 
larger organisms that can be built up from these 
elements, and the general theoretical regularities that 
may be detectable in the complex synthesis of the 
organism in question.3

On the negative side, and this was a criticism, heard from many
neurophysiologists, there was no way of testing the validity of
the axioms and there was physiological evidence to indicate that
the situation in the human nervous system was not as simple as
von Neumann1s analysis made it out to be. Moreover, even
accepting von Neumann's analysis, one knew nothing about the
physiological operation of the individual elements from his
analysis. Nevertheless, von Neumann was convinced that the
axiomatic approach, which had worked so successfully for him in
clarifying a complicated situation in quantum mechanics, was the
way in which to get a handle on the problems of information
processing in complicated automata such as electronic computers or
the human nervous system.

Von Neumann pointed to Turing's work on Turing machines and 
McCulloch and Pitt's axiomatic model of
the neural networks of the brain as the two most significant 
developments towards a formal theory of automata and indicated how

3 GALTA, pp 289-290.
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each of these developments was equivalent to a system in formal 
logic. Although von Neumann believed these were important steps 

towards a mathematical theory of automata, he was dissatisfied 
with what the approach of formal logics could contribute to a 
theory of automata that would be useful in the actual construc
tion of computing machinery.

There exists today a very elaborate system of formal 
logic, and specifically of logic applied to mathematics. 
This is a discipline with many good sides, but also 
with certain serious weaknesses. This is not the 
occasion to enlarge upon the good sides, which I. have 
certainly no intention be belittle. About the 
inadequacies, however, this may be said: Everybody who
has worked in formal logic will confirm that it is one 
of the technically most refractory parts of mathematics. 
The reason for this is that it deals with rigid, 
all-or-none concepts, and has very little contact with 
the continuous concept of the real or of the complex 
number, that is, with mathematical analysis. Yet 
analysis is the technically most successful and best- 
elaborated part of mathematics. Thus formal logic is, 
by the nature of its approach, cut off from the best 
cultivated'portions of mathematics, and forced onto 
the most difficult part of the mathematical terrain, 
into combinatorics.
The theory of automata, of the digital, all-or-none 

type, as discussed up to now, is certainly a chapter in 
formal logic. It would, therefore, seem that it will 
have to share this unattractive property of formal 
logic. It will have to be, from the mathematical point 
of view, combinatorial rather than analytical.^

Von Neumann pointed out, for example, that formal logic had 
never been concerned with how long a finite computation actually

4 GALTA, p. 303.
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is— as long as it was finite, it was treated in the same way.
But this did not take into consideration the important fact for
the theory of computing that certain finite computations are so
long as to be practically prohibitive, and that other computations,
though finite in length, are so long as to be theoretically
impossible since they would take more time or room than there is in
the physical universe. Von Neumann also observed that at each
step in a computation there is a non-zero probability of error;
thus, if computations were allowed to become arbitrarily long, the
reliability of the computation would approach a probability of
zero. Finally, he pointed out that, in actual practice, people
using computers allot a certain fixed time to complete particular
computations— a fact to which formal logics are not sensitive.
Thus von Neumann suggested that the formal logical approach be
modified in two ways to develop a "logic of automata": by
considering the actual lengths of the "chains of reasoning" and
by allowing for a small degree of error in logical operations.
As von Neumann stated the second alteration:

the operations of logic (syllogisms, conjunctions, 
disjunctions, negations, etc., that is, in the 
terminology that is customary for automata, various 
forms of gating, coincidence, anti-coincidence, blocking, 
etc., actions) will all have to be treated by procedures 
which allow exceptions (malfunctions) with low but 
non-zero probabilityes.^

5 GALTA, p. 304.
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He indicated that such a logic would have a more analytical and 
less combinatorial approach than formal logic. In fact, it would 

resemble formal logic less than it would Boltzmann's theory of 
thermodynamics, which implicitly manipulated and measured a 
concept related to information.

Von Neumann contended that such a logic of automata was
necessary if computing machinery were to be constructed of any
significantly higher complexity than was being built at the time.
A fortiori, he argued, it would be that much less likely that one
would understand the workings of even more complicated systems
such as the human central nervous system, without such a logic
of automata. The higher complexity of the natural over the
artificial system he illustrated by contrasting the techniques
utilized in the two systems for handling malfunctions.

The basic principle of dealing with malfunctions in 
nature is to make their effect as unimportant as 
possible and to apply correctives, if th . are neces
sary at all, at leisure. In our dealir ... *rith artificial 
automata, on the other hand, we require an immediate 
diagnosis. Therefore, we are trying to arrange the 
automata in such a manner that errors will become as 
conspicuous as possible, and intervention and correction 
follow imediately. ®

The consequences were enormous. A single error broke down the
process of computation until the error could be painstakingly

6 GALTA, pp. 305-6.
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found in the artificial machine, whereas natural systems operated 
smoothly, with no loss of time, and with roughly the same 

accuracy as the artificial systems. A logic of. automata, von 
Neumann believed, would provide the theory necessary to construct 
an artificial automaton which could utilize the natural technique 
of error handling.

Thus von Neumann argued that there were two components to 
his formal theory of automata: a logical theory of control and
information and a probabilistic theory of reliability of machines 
with unreliable components. While von Neumann admitted that the 
probabilistic theory was the more important for the development 
of modem computing equipment, he pointed out that the logical 
theory was a necessary preliminary to the probabilistic theory.

As von Neumann recognized, the logical theory of automata 
amounted to the application of formal logics to the theory of 
automata. By 1948 these results had already been extensively 
developed by the mathematical logicians. Von Neumann was not 
responsible for the development of new logical results in the 
theory of automata, but he was responsible for the application 
of existing results. In fact, Turing, with his work on computable 
numbers, and McCulloch and Pitts, with their work on neural 
networks, had already made significant strides in applying 
results from mathematical logic to the theory of automata. What 
then was von Neumann*s contribution to this aspect of the
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theory of automata?
Von. Neumann contributed to the logical theory of automata 

by compiling the results of Turing, McCulloch and Pitts, and others 
into a coherent theory, drawing from it some remarkable and novel 
facts about the structure of complexity in information processing 
machinery, utilizing the results to develop a theory of and models 
of self-reproducing automata, and extending the theory to consider 
the probabilistic features of real automata.

Von Neumann * s contributions strictly to the logical theory 
of automata can be understood by contrasting his work with the 
earlier work of Turing and of McCulloch and Pitts. As von Neumann 
pointed out,^ McCulloch and Pitts intended their work only "as 
a simple mathematical, logical model to be used in discussions of 
the human brain." The fact that their system turned out equi
valent to a formal logic was an interesting and important fact 
that they were careful to point out. However, they were merely 
intent on synthesizing an axiomatic model of the neural network and 
never deigned to develop the ramifications of their work for a 
general theory of automata. Turing, on the other hand, was 

interested in formal logics, in particular the Entscheidungs-

 ̂TOCA, p. 43. For the remainder of this chapter TOCA will 
signify "Theory of Complicated Automata."
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problem, and analyzed the process of computing in terms of a 
machine which would carry out these computations. While he w; 
heavily involved with the theoretical possibilities of compu 
he never attempted to draw a formal theory of automata from the 
results of his 1936 paper on computable numbers. Von Neumann's 
contribution to a logical theory of automata was in drawing 
together McCulloch and Pitts* synthetic account of the brain and 
Turing's analytic theory of computing into a comprehensive theory 
of automata which considered machine computation and brain process

fsing as two aspects of the same theory and which could be 
examined by utilizing the results of both approaches.

In each of his first three papers on automata, von Neumann 
gave detailed examinations of the work of McCulloch and Fitts and 
of its significance to the theory of automata. What McCulloch 
and Pitts did was to provide an axiomatic account of the way in 
which an idealized neuron would work. Rather than axiomatize the 
functioning of a neuron as it actually existed, they decided to 
axiomatize a much simpler object which still had all the 
essential traits of an actual neuron without the incidental 
complications. Whereas the physiologists criticized this deci

sion, von Neumann applauded it for the simplicity it introduced
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to the study. Here is von Neumann's lucid description o£ 
McCulloch and Pitts' definition of an idealized neuron:

The definition of what we call a neuron is this.
One should perhaps call it a formal neuron, because 
it certainly is not the real thing. A neuron will be 
symbolically designated by a circle, which symbolizes 
the body of the neuron, and a line branching out from 
the circle, which symbolizes the axon of the neuron.
An arrow is used to indicate that the axon of one neuron 
is incident on the body of another. A neuron has two 
states: it's excited or not. As to what excitation is,
one need not tell. Its main characteristic is its 
operational characteristic and that has a certain 
circularity about it: its main trait is that it can
excite other neurons. Somewhere at the end of an 
involved network of neurons the excited neuron excites 
something which is not a neuron. For instance, it 
excites a muscle, which then produces physical motion; 
or it excites a gland which can produce a secretion, 
in which case you get a chemical change. So, the 
ultimate output of the excited state really produces 
phenomena which fall outside present treatment. These 
phenomena will, for the sake of the present discussion, 
be entirely disregarded.8

Von Neumann pointed out that the best way to regard these
formal neurons was as "black boxes" with fixed finite numbers of
inputs which receive stimuli and fixed finite numbers of outputs
which emit stimuli. These plack boxes were then subject to

9certain rules:
(1 ) ĉich input connection is of one of two types: 

excitatory or inhibitory;

8 TOCA, p. 44.
9 GALTA, p. 309.
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(2) The boxes ace of one of two types: threshold one or 

threshold two;
(3) To stimulate a box, there must be at least as many 

excitatory inputs simultaneously as the threshold level of the 
box, and no inhibitory inputs;

(4) After a box is stimulated, there is a finite delay 
time, which is assumed to always be the same, after which the 
body emits an output pulse; and

(5) Such an output may be carried by appropriate connections 
to any number of other neuron's inputs, where it will act as the 
same type of input stimulus as described above.

Formal neural networks were then built out of these formal
neurons and the connections between them.

Theflfunctioning" of such a network may be defined by 
singling out some of the inputs of the entire system and 
sotLa. of its outputs, and then describing what original 
stimuli on the former are to cause what ultimate 
stimuli on the latter.10

Once von Neumann had described the neural system, he 
focused on the crucial result of McCulloch and Pitts' work, the 
result which made it important to the theory of automata. This 
important result was that any functioning of the brain which could'

10 GALTA, p. 309.
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be described "logically, strictly, and unambiguously"^ in a 
finite number of words could be represented by a formal neural 
netwprk. The significance of this result to the theory of 
automata was described in detail by von Neumann:

It is well to pause at this point and to consider 
what the implications are. It has often been claimed 
that the activities of the human nervous system are so 
complicated that no ordinary mechanism could possibly 
perform them. It has also been attempted to name 
specific functions which by their nature no ordinary 
mechanism could possibly perform them. It has been 
attempted to show that such specific functions, 
logically, completely described, are per se unable of 
mechanical neural realization. The McCulloch-Pitts 
result puts an end to this. In proves that anything 
that can be exhaustively and unambiguously described, 
anything that can be completely and unambiguously put 
into words, is ipso facto realizable in a suitable 
finite neural network. Since the converse statement is 
obvious, we can therefore say that there is no differ
ence between the possibility of describing a real or 
imagined mode of behavior completely and unambiguously 
in words, and the possibility of realizing it by a finite 
formal neural network. The two concepts are co-extensive. 
A difficulty of principle embodying any mode of behavior 
in such a network can exist cnly if we are also unable 
to describe the behavior completely.12

Von Neumann reviewed five serious cbjections to the McCulloch 
and Pitts* account. First, although the above result showed that 
certain modes of behavior could be effected in finite f rmal neural 

networks, could it be shown as well that these finite networks

11 GALTA, p. 309.
12 GALTA, pp. 309-310.
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were sufficiently small as to be practical? In particular, 

could a finite network be determined which was small enough to fit 
into the organism in question (if certain reasonable assumptions 
were made about the size of these formal neurons)? Second, could 
every mode of behavior be put completely and unambiguously into 
words? With regard to this point, von Neumann discussed the 

principle of visual analogy. He argued that it was too complex a 
principle to completely describe, say, all of the visual connec
tions, connotations, and categories associated with the word 

"triangle." This led von Neumann into a discussion of complexity, 
which is discussed below. Von Neumann's next two objections 
concerned situations in which the formal system did not adequately 
explain the way the nervous system actually functioned: the way
in which the nervous system transmitted continuous numbers as in 
the representation of blood pressure; and the way memory is stored. 
Finally, von Neumann objected to this account because it did not 
consider nerve fatigue resulting in a higher threshold after the 
neuron had fired.

The other formal logical system that von Neumann examined in 
several of his works on automata was Turing's work on machines and 
computable numbers. Von Neumann first described the machines and 
showed that they theoretically characterized all possible 
(information processing) automata. He then focused cn the 
universal Turing machine, which he saw as Turing's major
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contribution to the theory of automata, since it embodied all of 
the Turing machines, and therefore all of the possible information 

processing automata, in a single automaton. Von Neumann described 
the principle behind Turing's dramatic result:

An automaton is "universal" if any sequence that can 
be produced by any automaton at all can also be solved 
by this particular automaton. It will, of course, 
require in general a different instruction for this 
purpose.

The Main Result of the Turing Theory. We might 
expect a priori that this is impossible. How can there 
be an automaton which is at least as effective as any 
conceivable automaton, including, for example, one of 
twice its size and complexity?

Turing, nevertheless, proved that this is possible. 
While his construction is rather involved, the under
lying principle is nevertheless quite simple. Turing 
observed that a completely general description of any 
conceivable automaton can be (in the sense of the 
foregoing definition) given in a finite number of words. 
This description will contain certain empty passages, 
those referring to the functions mentioned earlier 
. . ., which specify the actual functioning of the 
automaton. When these empty passages are filled in, 
we deal with a specific automaton. As long as they are 
left empty, this schema represents the general defini
tion of the general automaton. Now it becomes possible 
to describe an automaton which has the ability to 
interpret such a definition. In other words, which, 
when fed the functions that in the sense described above 
define a specific automaton, will thereupon function 
like the object described. The ability to do this is no 
more mysterious than the ability to read a dictionary 
and a grammar and to follow their instructions about the 
uses and principles of combinations of words. This 
automaton, which is constructed to read a description and 
to imitate the object described, is thoi. the universal 
automaton in the sense of Turing. To make it duplicate 
any operation that any ether automaton can perform, it 
suffices to furnish it with a description of the
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automaton. In question, and, In addition, with the 
instructions which the device would have required for 
the operation under consideration.^

Von Neumann then focused on a principle which Turing made 
critical use of, but did not discuss in detail: "universality
is connected with a rigorous theory of how one describes objects 
and a rigorous routine of how to look up statements in a 
dictionary and obey them." He pointed out that Turing further 
utilized logic in the theory of automata by showing, by logical 
arguments, that it was impossible to construct certain sorts of 
automata.

The formal logical investigations of Turing went a 
good deal further than this. Turing proved that there 
is something for which you cannot construct an auto
maton; namely, you cannot construct an automaton which 
can predict in how many steps another automaton which 
can solve a certain problem will actually solve it.
So you can construct an automaton which can do anything 
an automaton can do, but you cannot construct an 
automaton, which will predict the behavior of any 
arbitrary automaton. In other words, you can build 
an organ which can do anything that can be done, but 
you cannot build an organ which tells you whether it 
can be done.

13 GALTA, pp. 314-15.
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This is concerned with the structure of formal 
logics. . . .  It is connected with the theory of 
types and with the results of Gfldel.^

This was the extent of von Neumann's discussion of the logical 
theory of automata. He never systematically developed the 
logical theory, but only indicated its flavor by discussing some 
of the main issues. He discussed the contributions of Turing and 
of McCulloch and Fitts and showed what bearing they had on the 
theory of automata. He indicated briefly how results from

14 TOCA, p. 51. There is a protracted discussion of Arthur 
Burks' investigation of just which results from logic meant by 
this statement. See Theory of Self-Reproducing Automata, 
pp. 51-56. (For the remainder of this chapter, SRA will signify 
"Theory of Self-Reproducing Automata.") Burks wrote to Gfldel 
about this passage. Here is GBdel's reply, as printed in the 
above work, p. 55:

I have some conjecture as to what von Neumann may 
have had in mind in the passages you quote, but since I 
never discussed these matters with him it is only a 
guess.

I think the theorem of mine which von Neumann refers 
to is not that on the existence of undecidable propo
sitions or that on the lengths of proofs, but rather the 
fact that a complete epistemological description of a 
language A cannot be given in the same language A , 
because the concept of truth of sentences of A cannot 
be defined in A . It is this theorem which is the crue 
reason for the existence of undecidable propositions in 
the formal systems containing arithmetic. I did not, 
however, formulate it explicitly in my paper of 1931 
but only in my Princeton lectures of 1934. The same 
theorem was proved by Tarski in his paper on the concept 
of truth published in 1933 in Act. Soc. Sci. Lit.
Vars., translated on pp. 152-278 of Logic, Semantics, 
and Metamathematics.
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mathematical logic could be applied directly to issues about 
automata. He showed some of the limitations of this logical 
theory of automata. He then turned to his probabilistic theory 
to solve some of the more egregious problems left untouched by 
the logical theory.

The Statistical Theory of Automata

Von Neumann* s overriding concern in the development of a 

statistical (otherwise known as probabilistic) theory of informa
tion was the question of reliability of automata with unreliable 
components. His aim was a -theory which would determine the like
lihood of errors and malfunctions and a plan which would make 
what errors that did occur "non-lethal." The problem of reli
ability led him from a logical to a statistical account.^

To permit failure as an independent logical 
entity means that one does not state the axioms in a 
rigorous manner. The axioms are not of the form:
If A and B happen, C will follow. The axioms are 
always of this variety: if A and B happen, C will
follow with a certain specified probability, D will 
follow with another specified probability, and so on.
In other words, in every situation several alternatives 
are permitted with various probabilities.

Von Neumann pointed out that the logical and the statistical 
theories were not distinct. He argued a well-known philosophical 
position that probability can be considered as an extension of

1 5  T O C A ,  p .  5 8 .
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logic; therefore, the statistical theory of automata was simply an 

extension of the logical theory of autonata.
There is a striking similarity between von Neumann's exten

sion of automata from a logical theory to a statistical theory aud 
his work along the same lines in the foundations of quantum 
mechanics. Von Neumann mentioned this similarity in passing:

Though this new theory of information will be similar 
to formal logics in many respects, it will probably be 
closer to ordinary mathematics than formal logics is.
The reason for this is that present day formal logics has 
a very un-analytical, un-mathematical characteristic: it
deals with absolutely all-of-none processes, where 
everything that either does or does not happen is 
finitely feasible or not finitely feasible. These all- 
or-none processes are only weakly connected to analysis, 
which is the best developed and best known part of 
mathematics, while they are closely connected to 
combinatorics, that part of mathematics of which we 
know the least. There is reason to believe that the 
kind of formal logical machinery we will have to use 
here will be closer to ordinary mathematics than present 
day logic is. Specifically, it will be closer to 
analysis, because all axioms are likely to be of a 
probabilistic and not of a rigorous character. Such _a 
phenomenon has taken place in the foundations of quantum
mechanics,

In fact, von Neumann turned to theoretical physics for an 
approach to use in his statistical theory of information. He 
explicitly stated that there were two statistical theories of 
information "which are quite relevant in this context although

^  TOCA, p. 62. Underscoring not in the original.

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

375

they are not conceived from the strictly logical point of
view."^"7 He referred to the work of Boltzmann, Hartley, and
Szilard on thermodynamics and the work of Shannon on the concept

of noise and information on a communications channel. Von
Neumann then proceded to give an informal account of these 

18theories, arguing that this work on thermodynamics should be 
incorporated into the formal statistical account of automata.

I have been trying to justify the suspicion that a 
theory of information is needed and that very little of 
what is needed exists yet. Such small traces of it 
which do exist, and such information as one has about 
adjacent fields indicate that, if found, it is likely 
to be similar to two of our existing theories: formal
logics and thermodynamics. It is not surprising that 
this new theory of information should be like formal 
logics, but it is surprising that it is likely to have a 
lot in common with thermodynamics.19

This formal statistical theory of automata von Neumann attempted
to develop in "Probabilistic Logics and the Synthesis of Reliable
Organisms from Unreliable Components."

Von Neumann began this statistical treatment by character
izing automata in the same way McCulloch and Pitts characterized 

their idealized neurons: as "black boxes" with given inputs and
outputs and with rules relating input and output behavior. To

17 TOCA, p. 59.
1ft *For a discussion of this material, see Chapter Five.

15 TOCA, p. 62.
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be mathematically precise, von Neumann offered a precise defini-
20tion of single output automata:

Definition 1: A single output automaton with time delay
<5 (5 is positive) is a finite set of inputs, exactly 
one output, and an enumeration of certain "preferred" 
subsets of the set of all inputs. The automaton 
stimulates its output at time t + 6 if and only if at 
time t the stimulated inputs constitute a subset 
which appears in the list of "preferred" subsets, 
describing the automaton.

More generally, automata were formed by connecting single
output automata into networks in any possible way* provided that

21certain basic rules were followed:
Single output automata with given time delays can be 

combined into a new automaton. The outputs of certain 
automata are connected by lines or wires or nerve 
fibers to some of the inputs of the same or other 
automata. The connecting lines are used only to 
indicate the desired connections; their function is to 
transmit the stimulation of an output instantaneously 
to all the inputs connected with that output. The 
network is subjected to one condition, however.
Although the same output may be connected to several 
inputs, any one input is assumed to be connected to at 
most one output.

Rather than consider the problem of what could be constructed 
by means of networks of simple automata (as McCulloch and Pitts 
had done), von Neumann concentrated on the converse problem: Are

9(1 "Probabilistic Logics . . .," in Collected Works, 
V, p. 330.

21 Ibid., p. 331.
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there a few simple automata which would serve as a basis for all 

other automata; that is, from which all other automata could be 
constructed as networks through the proper connection of these 
basic automata? In preparation for answering this question, he 
first considered the relation of these automata to the proposi- 

tional calculus of mathematical logic. He showed that there was 
a one-one correspondence between single output automata (with

22given time delay) and propositions of the propositional calculus.
He then used the fact that the connectives "and", "or", and "not" 

were a basis for forming all propositions in the propositional 
calculus, in order to show that any single output automaton can

23be constructed as a network of "and", "or", and "not" automata.
In fact, von Neumann also showed that this was not the only 
possible basis for single output automata. For example, he

A  /

showed that the automaton which represented the Sheffer stroke 
could be a basis by itself for all other single output automata.

22 See Theorem 1, Ibid., p. 333, for a proof of the fact.
23 See Theorem 2, Ibid., p. 334.
24 The Sheffer stroke is defined by A/B means not-A or 

not-B. It was well known in logic that this operation was 
sufficient as the only connective for the formation of proposi
tional calculus. Von Neumann credits G. Gell-Mann and K. A.
Brueckner with suggesting its usage in this context.

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

378

Other automata, which do not represent well-known logical 
25connectives, were also suggested as bases.

Until this point in the discussion, von Neumann had only 
considered "circle-free" networks, those in which an output of an 
organ does not contribute to a later input of the same organ. He 
demonstrated that, by dropping this restriction, one could con
struct a wider variety of complicated automata, whose performance 

depended on events in the indefinitely remote past. Automata,
2ghe claimed, could be constructed which could count, do arith

metic, or perform inductive procedures. In fact, he constructed
a network which could "remember" which of two inputs was last 

27stimulated and another network which could "learn" (in a
Pavlovian way) that if an input a were stimulated, then input

28b would consequently be stimulated.

This distinction between circle and circle-free machines 
parallelled an important distinction in mathematical logic—

25 For example, there is the "majority organ" which, in 
propositional logic, relates to the proposition ab + ac + be.

26 Ibid., p. 340.
27 See §6.1, Ibid., pp. 342-343.

See §6.3, Ibid., pp. 343-345.
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as von Neumann was well aware:
The use of cycles or feedback In automata extends the 
logic of constructable machines to a large portion of 
intuitionistic logic. Not all of intuitionlstic logic 
is so obtained, however, since these machines are 
limited by their fixed size. . . .  Yet if our automata 
are furnished with an unlimited memory— for example, an 
infinite tape, and scanners connected to afferent 
organs, along with suitable efferent organs to perform 
motor operations and/or print on the tape— the logic of 
constructable machines becomes precisely equivalent to 
intuitionistic logic.

30The reason for this von Neumann described in detail:
These general automata {network of circle-free 

automata[ are, in particular, not immediately equivalent 
to all of effectively constructive (intuitionistic) 
logics. That is to say, given a problem involving 
(a finite number of variables), which can be solved 
(identically in these variables) by effective 
construction, it is not always possible to construct a 
general automaton that will produce this solution 
identically (i.e. under all conditions). The reason for 
this is essentially, that the memory requirements of 
such a problem may depend on (actual values assumed by) 
the variables (i.e. they must be finite for any 
specific system of values of the variables, but they may 
be unbounded for the totality of all possible systems 
of values), while a general automaton in the above sense 
necessarily had a fixed memory capacity. That is to 
say, a fixed general automaton can only handle (identi
cally, i.e.generally) a problem with fixed (bounded) 
memory requirements.

In other words, a fixed general automaton is only primitive, and
not general, recursive!

29 Ibid., pp. 340-41.
30 Ibid.. p. 335.
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After concluding a description of automata and the way in 

which they could be built out of simpler components, von Neumann 
turned to the problem of error. As he recognized, it is 
unrealistic to expect faultless performance of the basic compon
ents, whether they be biological or electro-mechanical. The 
basic difficulty, as he saw it, was not that incorrect information 
might be obtained by an automaton with unreliable components, but 
that irrelevant results would be produced. As illustration, he 
considered his rudimentary memory automaton mentioned above. He 
was able to show that, assuming a probability of e (with 

0 < e < *s) for the basic components of this automaton to misfire, 
the probability over time of the final output of the automaton 
misfiring tends to h. In other words, the content of the machine 
has been lost because the behavior of the output was no different
from random behavior, due to the accumulation of errors in the

31basic conponents over time.
To obtain a more precise, mathematical handle on the problem, 

von Neumann phrased it thus: given the function that an automaton
is to perform, given the basic organs from which the automaton is

31 An error E>*s just says that the automaton is behaving 
with the negative of its attributed function with a probability 
of 1 - Elds — a significant result!
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to be built and the probability e of malfunction of a basic 
component, can an automaton be constructed from the stipulated 

components with the stipulated function such that the probability 
of error in the final output of the automaton is less than 6 , 
for a given 5 > 0 ? In particular, is there a lower bound on 
the size of fi ? Is there any technique which will assist in 
lowering the probability of error of the overall machine?

One apparent limitation to the overall reliability of the 
automaton seemed to be that 6 must be at least as great as e . 
However, von Neumann designed a technique, called "multiplexing," 
whereby 6 could be made arbitrarily small for most (fixed) 
values of e . The technique consisted of carrying all messages 
simultaneously on N lines instead of on a single line. Thus 
automata were conceived as black boxes with bundles of lines, 
instead of single lines, as input and output. A critical value 
A , with 0 < A < h  , was chosen. Then the stimulation of at least 
(1 - A)N bundles was considered as a malfunction. The basic idea 
was that any function to be carried out was to be carried out in 
N identical machines. The output that was produced by the 
majority of these machines was then considered to be the true 
output. Von Neumann oroved that, if N were made large enough, 

the malfunctioning of a small number of the basic components would 
only cause a malfunctioning of the entire automaton with 
arbitrarily small probability.
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Von Neumann suggested multiplexing as a way to control error

in the construction of machines. He found, upon completing
detailed calculations for an electronic computing machine with
2500 vacuum tubes and an actuation of each tube on the average
every five microseconds, that, if one desired an average of eight
hours between errors, one needed to multiplex roughly 17,500
times. A similar calculation for the human nervous system with
average error time of 10,000 years showed that the nervous system
required multiplexing roughly'28 , 000 times. Von Neumann concluded 

32the following:
It should be noticed that this construction 

{multiplexing] multiplies the number of lines by N 
and the number of basic organs by 3N . . . . Our above 
considerations show, that the size of N is 20,000 in 
all cases that interest us immediately. This implies 
that such techniques are impractical for present 
technologies of componentry (although this may perhaps 
not be true for certain conceivable technologies of the 
future), but they are not necessarily unreasonable (at 
least not on grounds of size alonet) for the micro
componentry of the human nervous system.

Nonetheless, he advocated the use of multiplexing in future
electronic machinery.

Von Neumann recognized that there were a number of difficulties
33with his probabilistic theory of automata. First, although he 

had shown that, on grounds of size, the human nervous system

32 Ibid., p. 368.

33 For details, see Ibid.. ill.
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could actually be multiplexed, he recognized that the nervous 

system did not have the same 'logical structure as he assumed of 
automata in this study. For example, the nervous system transmits 
information by analog as well as by the digital means, whereas he 
assumed strictly digital transmission. Second, in his mathematical 
analysis, he had assumed that there was randomness of stimulation 
of inputs. Yet, as he pointed out, there was likely to be strong 
statistical correlation between pulses at different times in the 
same organ when one considered networks which allowed feedback. 

Third, in this work he had assumed that the probability of com
ponent malfunction was a constant, independent of time and of all 
previous inputs. Yet, he was able to show cases where this 
assumption was clearly unrealistic.

In fact, McCulloch also objected to a number of assumptions
in von Neumann's probabilistic theory of automata as it applied

34to the functioning of the human nervous system:
He [von NeumannJ had decided for obvious reasons to 
embody his ^probabilistic} logic in a net of formal 
neurons that sometimes misbehaved, and to construct 
of them a device that was as reliable as was required 
in modem digital computers. Unfortunately, he made 
three assumptions, any one of which was sufficient to 
have precluded a reasonable solution. He was unhappy 
about it because it required neurons far more reliable 
than he could expect in human brains. The piquant

34 McCulloch, "What is a Number . . .," in Embodiments, 
pp. 11-13.
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assumptions were: first, that failures were absolute—
not depending upon the strength of signals nor on the 
thresholds of neurons; second, that his computing 
neurons had but two inputs apiece; third, that each 
computed the same single Sheffer stroke function. . . .

There were two other problems that distressed him.
He knew that caffeine and alcohol changed the threshold 
of all neurons in the same direction so much that every 
neuron computed some wrong function of its input. Yet 
one had essentially the same output for the same input. 
. . .  Associated, unobtrusively, with the problem is 
this: That of the 16 possible logical functions of
neurons with two inputs, two functions cannot be 
calculated by any one neuron. They are the exclusion 
"or,11 "A or else B," and "both or else neither"—  
the "if and only if" of logic. . . .

The last of von Neumann's problems was proposed to 
the American Psychiatry Association in March 1955.
It is this. The eye is only two logical functions 
deep. Granted that it has controlling signals from the 
brain to tell it what it has to compute, what sort of 
elements are neurons that it can compute so many 
different functions in a depth of Z neuron3 (that is, 
in the bipolars and the ganglion cells)?

McCulloch then cited the relevant physiological research to show
the limitations of von Neumann's idealized, mathematical theory.
However, the wealth of related physiological research indicated
the importance of such an idealized, mathematical approach to the
theoretical understanding of the brain.

Complexity and Self-Reproducing Automata

Von Neumann* s main concern in the cheory of automata was to 
provide understanding of the theoretical functioning of the human 
nervous system and of the modem electronic computer. It is 
clear from the great number of neurons and electronic valves these

R eprod u ced  w ith perm ission of the copyright ow ner. F urther reproduction prohibited w ithout perm ission.



www.manaraa.com

385

automata contain and the variety of tasks they can perform that 
both types of automata are highly "complicated"— in some non
technical sense of the term. Von Neumann was interested in this
concept of complication and in what ramifications it might have in 
the functioning of automata.

There is a concept which will be quite useful here, 
of which we have a certain intuitive idea, but which is 
vague, unscientific, and imperfect. This concept 
clearly belongs to the subject of information, and 
quasi-thermodynamical considerations are relevant to 
it. I know no adequate name for it, but it is best
described by calling it "complication.” It is effec-
tivity in complication, or the potentiality to do
things. I am not thinking about how involved the object 
is, but how involved its purposive operations are. In 
this sense, an object is of the highest degree of 
complexity if it can do very difficult and involved 
things.35

He stated, in terms of a paradox, the-problem concerning
complication that most interested him. "There are two states of
mind, in each of which one can put himself in a minute, and in

each of which we feel that a certain statement is obvious. But
each of chese two statements is the opposite or negation of the 

36other." The first involved conclusions which could be made 
from the study of living organisms: "That ^phylogenetic

TOCA, p. 78. In TOCA, GALTA, and "Probabilistic Logic 
. . ." von Neumann discusses the application of Shannon's work 
to the theory of automata.

36 TOCA, p. 78.
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evolution] starts from simple entities, surrounded by an unliving
amorphous milieu, and produces something more complicated.
Evidently, these organisms have the ability to produce something

37more complicated than themselves."
The ocher line of argument, which leads to the 

opposite conclusion, arises from looking at artificial 
automata. Everyone knows that a machine tool is more 
complicated than the elements which can be made with 
it, and that, generally speaking, an automaton A , 
which can make an automaton B , must contain a complete 
description of B and also rules on how to behave while 
effecting the synthesis. So, one gets a very strong 
impression that complication, or productive potenti
ality in an organization, is degenerative, that an 
organization which synthesizes something is necessarily 
more complicated, of a higher order, than the organi
zation it synthesizes. This conclusion, arrived at by 
considering artificial automata, is clearly opposite to 
our early conclusion, arrived at by considering living
organisms.38

Von Neumann was particularly concerned with the paradox because it 
suggested that there was a rift between the laws governing living 
organisms and artificial automata— the two domains that he was 
trying to unify with his theory of automata. The quotation also 
indicated the relevance of the relf-reproduction issue to a 
discussion of information processing automata. Any automaton 
which is in the process of self-reproduction must pass on to its

37 TOCA, p. 79. See further discussion of this point in 
l, p. 310.

— —  — - -  y

GAi.IA, p. 310
38 TOCA, p. 79.
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progeny information relating to its basic description and to its 
behavior. This is equally true in the case of genetic coding and 
of Turing machine description numbers.

Von Neumann replied that certain automata, including certain 
types of biological organisms, were sufficiently complicated 
themselves so that they could produce even more complicated 
automata, whereas other automata, including machine tools, have 
not the internal complexity to produce automata even as compli
cated as themselves.

There is thus this completely decisive property of 
complexity, that there exists a critical size helow 
which the process of synthesis is degenerative, but 
above which the phenomenon of synthesis, if properly 
arranged, can become explosive, in other words, where 
synthesis of automata can proceed in such a manner that 
each automaton will produce other automata which are 
more complex and of higher potentialities than itself?^

Von Neumann was not clear on how to measure the complexity, nor
on what this critical size is. However, it was clear from his
discussion that the critical size was large; that it might require
the combination of millions of basic parts.

Von Neumann addressed a related question— the means by 
which an automaton can produce an even more complicated automaton 
— through an illustration of the working of the universal Turing

39 TOCA, p. 80.

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

388

machine. The universal Turing machine was chosen for examination 
because of its precise mathematical formulation which enabled 
precise study of its structure. When supplied with information 

I and with a description 1^ of Turing machine A , the 
universal Turing machine A is able to produce the same output 
as machine A wc ud if supplied with input I . 1^ consists
of a set of rules, each of which describes how machine A would 
behave if it were in a particular state of mind and were con
fronted with a particular datum of information. Machine A 
is designed so that it can read this set of rules 1^ , for any 
Turing machine A— no matter how complicated— and put them into 
action; thus simulating machine A . To read, interpret, and 
act on any such set of rules requires a certain, necessary level 

of complexity on the part of A .
Nevertheless, this still does nof explain the way in which

the universal machine manages to impart greater 'omplication to
the machines it simulates. Von Neumann explained the way A

40compensated in the following quotation:

A is able to imitate any automaton, even a much more 
complicated one. Thus a lesser degree of complexity 
in an automaton can be compensated for by an appropriate 
increase of complexity of the instructions. The impor
tance of Turing's research is just this: that if you
construct an automaton right, then any additional 
requirements about the automaton can be handled by

40 TOCA, p. 50.
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sufficiently elaborate instructions. This is only 
true if A is sufficiently complicated, if it has 
reached a certain minimum level of complexity. In 
other words, a simpler thing will never perform 
certain operations, no matter what instructions you 
give it; but there is a very definite finite point 
where an automaton of this complexity can, when given 
suitable instructions, do anything that can be done 
by automata at all.

Although von Neumann never explicitly stated that this was the
means by which other automata than A compensated for greater
complexity in their progeny, it is clear from the context that he
considered this a possible mechanism for biological organisms.

Von Neumann applied a result due to Turing to demonstrate an 
ironic fact about automata. He showed that, although an auto
maton, such as the universal Turing machine, could be constructed 
which could carry out any computation capable by an automaton, 
one cannot construct an automaton which will predict the behavior
of an arbitrary automaton! Turing, in proving the recursive

41unsolvability of the halting problem, had shown that, due to 
logical considerations, there is no automaton which can determine 
the ntnnhp.- of steps it will take another automaton to solve a 
problem— even if it is known tkct the latter automaton can solve 
the problem. Von Neumann suggested the relationship of these

^  See "On Computable Numbers . .
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/ oresults from mathematical logic to the problem of complication:
This result of Turing is connected with the struc

ture of formal logics . . .  It is connected with the 
theory of types and with the results of Gtidel. The 
feature is just this, that you can perform within the 
logical type that's involved everything that's feasible, 
but the question of whether something is feasible in 
a type belongs to a higher logical type. It's con
nected with the remark . . .: that it is character
istic of objects of low complexity that it is easier 
to talk< about the object than produce it and easier 
to predict its properties than to build it. But in the 
complicated parts of formal logic it is always one 
order of magnitude harder to tell what an object can do 
than to produce the object. The domain of the 
validity of the question is of a higher logical type 
than the question itself.

Thus, another close relation was struck between mathematical
logic, information theory (complexity), and the theory of
automata.

Although the universal Turing machine provided a precise 
object to study because of its exact mathematical description, 
it was not a self-reproducing automaton in the sense that its 
output was not another machine like itself, but rather only a

/ 0 TOCA, p. 51. The result of Gttdel's referred to is the 
fact that the truth of a language A cannot be defined in A .
See K. GiJdel, "On Undecidable Propositions of Formal Mathematical 
Systems" (1934) and A. Tarski, Logic, Semantics, and Metamathe
matics (1933), pp. 152-278. There is a fascinating discussion of 
this point in von Neumann's work on automata theory and its 
relation to GUdel's work in logic in TOCA, pp. 53-56. Cited 
there are letters between Arthur Burks and GHdel regarding GUdel’s 
work.
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paper tape which characterized the behavior of another— not
necessarily similar— automaton. In fact, it was the original
universal Turing machine, and not its output, that acted like the
other automaton. Von Neumann was not satisfied with Turing's
machine as a characterization of self-reproducing automata.
Consequently, he planned to build four mathematical models of
automata which actually would produce as output a machine like
themselves. In fact, he completed only two of these models,

43known as the kinematic and and the cellular models.

Before describing the individual models, von Neumann outlined 
a general description of a self-reproducing automaton in terms of 
a complex of machines A, B, C, and D .44 Automaton A was designed 
to construct another automaton upon receipt of a description of 
the machine. The universal Turing machine would be such an 
automaton A. However, von Neumann preferred that the description 
be carried out on other than a punched tape (as in Turing's 
case) for structural reasons. This description was what 
von Neumann called the "instruction" and labelled I. Thus, 
various I could be inserted in A with differing results.

Automata B, C, and D were also constructed so that

43 See Arthur Burks' comments in von Neumann's Theory of 
Self-Reproducing Automata, pp. 93-95.

44 See GALTA, pp. 316-17 and TOCA, pp. 82-86.
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instructions I might be inserted into them. Automaton B was 
designed to be a "reproducer." Its function was to read the 
inserted I and duplicate a copy of the instructions. Automaton 
C was a control mechanism. Automata A and B were combined and 
controlled by C. When I was inserted in A, C would cause A to 
construct the automaton described by I. C would then cause B to 
duplicate instructions I and insert them in the new automaton 
just constructed by A. Next C would separate the new construction 
from system A + B + C as an independent automaton. Call the 
complex A + B + C automaton D. Let Ip be the instructions which 
describe machine D. If Ip were inserted into automaton A of 
machine D, a new automaton E would be constructed, which would be 
self-reproductive. This provided the logical description of a 
self-reproducing automaton.

This logical schema for self-reproducing automata was not 
intended only fcr use in the construction of artificial self- 
reproducing automata. Von Neumann believed that it provided 
insight into the functioning of natural self-reproductive sys
tems as well.

. . .  it is quite clear that the instruction Ip is 
roughly effecting the functions of a gene. It is also 
clear that the copying mechanism B performs the funda
mental act of reproduction, the duplication of the 
genetic material, which is clearly the fundamental 
operation in the multiplication of living cells. It 
is also easy to see how arbitrary alterations of the 
system E, aud in particular of Ip, can exhibit certain
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typical traits which appear in connection with muta
tion, lethally as a rule, but with a possibility of 
continuing reproduction with a modification of traits.
It is, of course, equally clear at which point the 
analogy ceases to be valid. The natural gene does 
probably not contain a complete description of this 
object whose construction its presence stimulates.
It probably contains only general pointers, general 
cues. In the generality in which the foregoing 
consideration is moving, this simplification is not 
attempted. It is, nevertheless, clear that this 
simplification, and others similar to it, are in 
themselves of great and qualitative importance.^

Von Neumann used this model for further study of the process of 
46mutation.

47Von Neumann's kinematic model was his earliest and most 
simplistic model of self-reproduction. His aim was to design an 
automaton, built from a few types of elementary parts, which could 
construct other automata like itself from a stockpile of the 
elementary parts. As von Neumann designed it, the kiuematic 

model was to float in a reservoir filled with an unlimited supply 
of these elementary parts. The constructing automaton would 
contain a description of the automaton it was to build. It

45 GALTA, pp. 317-18.
See GALTA, p-. 318, and TOCA, pp. 86-87.

41 Von Neumann gave three lectures on automata at the 
Institute for Advanced Study in June, 1948, where he described 
the kinematic model. See TOCA, pp. 80-82 for details. More on 
the model can be found in GALTA, pp. 315-16 or in SRA, pp. 93-94.
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would sort through the pieces in the reservoir until it found the 

ones it needed, which would then be assembled according to the 
instructions.

Units were needed to control the operation, to seize and 
identify elementary parts, and to shape them into the new 

automaton. Von Neumann identified eight basic units in his 
kinematic model. Four were for information processing and 
control. A stimulus organ received and transmitted stimuli. 
Coincidence and inhibitory organs managed logical operations.
A stimuli producer produced stimuli. The fifth unit was a 
rigid member, from which a frame for the new automaton could be 
constructed. Connections between parts of the new automaton were 
to be made by a fusing organ. Connections were to be broken by 
a cutting organ. The final unit was a muscle, the task of which 
was to produce motion through contraction. Von Neumann claimed 
these were sufficient to carry out the operations of the 
kinematic model.

Von Neumann's second model of self-reproduction, his cellular
48model, was created with the aid of the logician, S. M. Ulam, 

and was more amenable to mathematical examination than was the

^  See S. M. Ulam, "Random Processes and Transformations," 
Proceedings of the International Congress of Mathematicians,
1950, Vol. II, pp. 264-75, Providence, RI, 1952.
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kinematic model. The aim of this and the other two models was
to avoid muscular, geometrical, and kinematic considerations and
concentrate only on logical factors:

The constituent organs that are needed for the automaton 
construction must thus be found and acquired in space, 
they must be moved and brought into contact and 
fastened together in space, and all automata must be 
planned as true geometric (and kinematical and mechan
ical) entities. . . . But even the simplest approach, 
which disregards the above-mentioned properly mechanical 
aspects entirely requires quite complicated geometrical- 
kinematical considerations. Yet, one cannot help 
feeling that these should be avoided in a first attempt 
like the present one: in this situation one ought to
be able to concentrate all attention on the intrinsic, 
logical-combinatorial aspects of the study of automata. 
The use of the adj ective formalistic . . . was intended 
to indicate such an approach— with, as far as feasible, 
an avoidance of the truly geometrical, kinematical, or 
mechanical complications. The propriety of this 
desideratum becomes even clearer if one continues the 
above list of avoidances, which progressed from 
geometry, to kinematics, to mechanics. Indeed, it can 
be continued (in the same spirit) to physics, to 
chemistry, and finally to the analysis of the specific 
physiological, physico-chemical structures. All these 
should come in later, successively, and about in the 
above order; but a first investigation might best avoid 
them all, even geometry and kinematics. ^

The aim of the cellular model was to remove the kinematic 
considerations by constructing an automaton which consisted of 
stationary objects, normally in a quiescent state which, under 
certain circumstances, would assume an active state. In the

49
^  SRA, p. 102.
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cellular model, the automaton consisted of an Infinite, two- 

dimensional array of square cells. Each cell contained the same 
basic automaton, which could assume any of twenty-nine internal 
states: one unexcited state, twenty excitable states, and eight
excited states. Each cell was connected to the four contiguous 
cells, and rules were listed for the transmission of excitation 
from one cell to it3 neighbors. Thus the cellular model was 
intended as a two-dimensional, idealized model of a neural 
network. Self-reproduction occured when the initial logical 
structure of the automata, coded in terms of the cell states in 
a finite region of the cellular plane, was copied in a distinct 
finite region of the cellular plane which had originally been 
quiescent.

Von Neumann wanted a model of self-reproduction which was 
more like natural nervous systems than his cellular model. Thus, 
he proposed an excitation-threshold-fatigue model. It was to be 
based on the cellular model. However, each cell was to have a 
fatigue mechanism and a threshold. Although von Neumann never 
explicitly described the details of the excitation-threshold- 
fatigue model, in his treatise on probabilistic logics he did

This model was to be described in "Construction, 
Reproduction, Homogeneity." However, the work was never completed. 
Arthur Burks edited the fragmentary treatise, from which this 
information is taken.
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describe an idealized neuron with threshold and fatigue mechan
ism.^ According to this model, after each firing of a neuron, 
there is an absolute refractory period and later a relative 
refractory period before the neuron returns to normal threshold 
level. During the absolute refractory period, a neuron can not 
be excited under any circumstances. Other times, a neuron will 
be excited by any number of inputs exceeding the threshold 
level at the time. However, during the relative refractory 

period, the threshold level is increased, necessitating greater 
levels of stimulation to fire the neuron. This threshold and 
fatigue mechanism was to be incorporated into the rules of the 
automaton housed in each cell. Otherwise, this model was to 
function in the same way as the cellular model.

The fourth system, the continuous model, was to be a refine
ment of the excitation model. The plan was to consider the cells 
as "(infinitesimal) elements of a cuutinuously extended medium"
rather than as "discrete entities" as in the cellular and 

52excitation models. The plan was to use simultaneous differen
tial equations to consider the chemical, physic?.!, and biological

^  See "Probabilistic Logic . . .," pp. 372-78. 
52 SRA, p. 103.
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53as well as logical factors in the firing of neurons. The
details of this model were never worked out.

The Computer and the Brain

Von Neumann's overriding concern throughout the development 
of his theory of automata was for a unified study of modem 
computing machines and the human nervous system. Even in his 
early works on automata, GALTA and TOCA, he pointed out similar
ities and dissimilarities of the two systems when viewed as 
digital processors of information. He intended to present a 
detailed comparison of the two types of automata in the Silliman 
Lectures at Yale University in 1956. However, the illness that 

eventually ended in his death precluded his completing this 
project. The fragments of the lectures which were completed were 
published under the title The Computer and the Brain. When 
considered in light of his earlier comments, it is possible to 
reconstruct his comparison of the computer and-the brain as 
digital information processers.

Von Neumann began by comparing the basic components, i.e., 
the switching organs, in the natural and artificial systems. In

Von Neumann's training as a chemical engineer and his work 
with fluid dynamics perhaps prompted this approach.
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the case of the brain, the basic switching organ is the neuron.
In the case of the computing machine of von Neumann's day, it 
was the vacuum tube. (Von Neumann envisioned making similar 
comparisons with other types of artificial switching organs as 
technology advanced.) Included were detailed study of the speed, 
energy comsumption, size (volume), efficiency, and number of basic 
switching organs required in each system. He concluded that the 
artificial switching units required greater volume, consumed 
more energy, and were 10,000 times less efficient (in ergs/binary 
action) than their natural counterparts. However, the artificial 

organs did have one advantage over neurons which possibly could 
conpensate in future machines for all other disadvantages; 
they were considerably (roughly 5,000 times) faster than 
neurons and did not require nearly so long for recovery between 
firings.

Von Neumann also considered the brain and the computer as 
total information processing systems. He contrasted the number of 
multiplications necessary to carry out certain basic computations, 
the precision, and the reliability of the two types of systems, 
and compared their means of memory storage, input and output, 
control, and balance of components. Several conclusions were 
drawn from these comparisons important to the practical theory of 
computing. However, von Neumann recognized that so little was 
known about the human brain and that computer construction was
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in such a nascent stage that any conclusions were highly liable 

to change.
One conclusion concerned the means of memory storage in the 

two systems. Although the actual mechanism utilized by the brain 
to store information was not understood, it was clear from all 
that the mind remembers in one lifetime that the brain must 
store (according to von Neumann's estimate) at least 10^, and 
possibly 10^, bits of information in memory. Von Neumann hoped 
for significant improvement in artificial memones; however, it 

was clear that the best artificial memory of his time would fall 
at least several orders of magnitude short in storage capacity 
of even the conservative 10^ figure. In fact, von Neumann 
pointed to the lack of accessible memory storage as the most 

severe limitation on the computers of his day. Two factors 
entered the storage problem: capacity and access. Whereas the
vacuum tube provided quick access to memory, its bulk and other 
technical factors precluded its use as the sole type of organ in
a large memory. On the other hand, von Neumann foresaw the use of
acoustic delay lines and cathode ray tubes for information 
storage. While they provided extensive storage, they were 
slow to access. Thus, he suggested a technique for the construc

tion of computer memories involving a hierarchy of memories,
each level of memory having more storage, but slower access time, 
than the preceding level. This plan was implemented by
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von Neumann and became part of standard computer design.
A second point to' come out of this comparison of the brain 

and the computer involved the materials used in the construction 
of automata. According to von Neumann, the computer engineer of 
the future would be well advised to imitate in artificial 
switching organs the means of construction and materials used 
in neurons, because of the neuron's superiority in smaller 
scale, greater precision, lower energy requirements, and ability 
for self-repair.

The materials which we are using are by their very 
nature not well suited for the small dimensions 
nature uses. Our combinations of metals, insulators, 
and vacuums are much more unstable than the materials 
used by nature . . .  If a membrane is damaged it will 
reconstruct itself, but if a vacuum tube develops a 
short between its grid and cathode it will not recon
struct itself. Thus the natural materials have some 
sort of mechanical stability and are well balanced 
with respect to mechanical properties, electrical 
properties, and reliability requirements. Our arti
ficial systems are patchworks in which we achieve 
desirable electrical traits at the price of mechani
cally unsound things. . . . the differences in size 
between artificial and natural automata are probably 
connected essentially with quite radical differences in 
materials.54

In fact, von Neumann paid attention to the physiological studies 
of the make-up of the neuron with intent to apply it to the 
development of new artificial switching organs.

54 TOCA, p. 70.
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A third observation made by von Neumann from his comparison 
of artificial and natural automata involved the differing philo
sophies concerning the treatment of error in the two systems. 
Using Shannon's theory of communication and some probability 
theory, von Neumann calculated the probability for error per 
individual action of a switching organ provided that the computer 
and the brain were to function errorlessly for an empirically 
estimated reasonable period of time. Assuming a mean free path 
of approximately seven hours between fatal errors on a contem
porary machine like ENIAC, von Neumann computed that the proba
bility of error per actuation of a switching organ should be of 

-13the order of 10 . Assuming that fatal errors really are
"fatal" in humans and thus requiring a mean free path of sixty
years between fatal errors, he computed that the probability of

-20error per neuron actuation should be of the order of 10
Yet, he knew that the vacuum tube and suspected that the 

neuron were not nearly that accurate. Thus, both systems must 
have some means for dealing with errors which did not result in 
total collapse of the system. He pointed out that artificial 
automata are designed so that, every time there is an error, the 
machine will stop, locate the error, and correct it. This is 
the idea behand the technique of multiplexing; a multiplexed 
machine will do computation a number of times and, if not enough 
of them agree, the machine will not operate. The philosophy
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for handling errors is radically different in natural automata:^
It's very likely that on the basis of the philosophy 

that every error has to be caught, explained, and 
corrected, a system of the complexity of the living 
organism would not run for a millisecond. Such a 
system is so well integrated that it can operate 
across errors. An error in it does not in general 
indicate a degenerative tendency. The system is 
sufficiently flexible and well organized that as soon as 
an error shows up in any part of it, the system auto
matically senses whether this error matters or not. If 
it doesn't matter, the system continues to operate 
without paying any attention to it. If the error seems 
to the system to be important, the system blocks that 
region out, by-passes it, and proceeds along other 
channels. The system then analyzes the region separ
ately at leisure and corrects what goes on there, and if 
correction is impossible the system just blocks the 
region off and by-passes it forever. The duracion of 
operability of the automaton is determined by the time 
it takes until so many incurable errors have occurred, 
so many alterations and permanent by-passes have been 
made, that finally the operability is really impaired.

Although von Neumann never cited any evidence to show that 
this is an accurate sketch of what occurs in the human nervous 
system, it is known that he did pay close attention to work on 
the physiology of the brain. Presumably, this physiological 
research supported his theory. His clear intention was to 
apply the techniques utilized in the natural systems to the new 
artificial systems to be constructed. However, there were

55 TOCA, p. 71.
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several difficulties with this project

To apply the philosophy underlying natural automata 
we must understand complicated mechanisms better than 
we do, we must have more elaborate statistics about 
what goes wrong, and we must have much more perfect 
statistical information about the milieu in which a 
mechanism lives than we now have. An automaton can 
not be separated from the milieu to which it responds. 
By that I mean that it's meaningless to say that an 
automaton is good or bad, fast or slow, reliable or 
unreliable, without telling in what milieu it operates. 
. . .  in discussing a computing machine it is meaning
less to ask how fast or slow it is, unless you specify 
what types of problems will be given to it.

Machine as Thinker or Computer?

Von Neumann and Turing held radically different views about 
the types of problems to which computers should be set. From the 
very beginning, Turing's intention was to design machines which 

could carry out any computations capable of a human computer. 
Later, he claimed that machines could carry out any sort of intel
ligent behavior. In other words, his aim was to design machines 
which could perform any task possible through digital information 
processing.

56 TOCA, pp. 71-72.
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Von Neumann's view of the role of computers was much 
narrower than that of Turing:

It makes an enormous difference whether a computing 
machine is designed, say, for more or less typical 
problems of mathematical analysis, or for number cheory, 
or combinatorics, or for translating a text. We have an 
approximate idea of how to design a machine to handle 
the typical general problems of mathematical analysis.
I doubt that we will produce a machine which is very 
good for number theory except on the basis of our 
present knowledge of the statistical properties of 
number theory. I think we have very little idea as to 
how to design good machines for combinatorics and
translation.57

According to von Neumann, the difficulty in designing machines to 

carry out such activities was due to the differences between the 
computer and the brain. His comparison of the two had shown that 
the brain outperformed the computer in many essential ways, and 
this precluded the computer from accomplishing many tasks other 
than pure numerical computation. For some unknown reason, von 
Neumann insisted on working with the mature and complex adult 
mind rather than the learning mind which Turing hoped to model.
Von Neumann hoped, instead, to use the one advantage of the 
computer over the adult mind, speed of computation, in the role 
he assigned computers.

The role of computers in numerical computations in engineering

57 TOCA, p. 72.
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appeared straight-forward and obvious to von Neumann. Yet,
he also saw the computer as an important tool in Scientific
research in two important and more subtle ways. One involved
using the computer to do computations in situations where the
proper equations were known, but where the number of calculations
to be made was prohibitively large for the human computer. Such
was the case in physical chemistry and in quantum mechanics.

A considerable segment of chemistry could be moved from 
the laboratory field into the purely theoretical and 
mathematical field if one could integrate the applicable 
equations of quantum theory. Quantum mechanics and 
chemistry offer a continuous spectrum of problems of 
increasing difficulty and increasing complexity, 
treating, for example, atoms with increasing nunibers of 
electrons and molecules w^th increasing numbers of 
valence electrons. Almost any improvement in our 
standards of computing would open important new areas 
of application and would make new areas of chemistry 
accessible to strictly theoretical methods.58

The other application of computers in pure scientific re
search involved use of the computers to generate mathematical 
models. Von Neumann pointed out.that, in certain areas of applied 
mathematics, such as the theories of turbulence and of compres
sible, non-viscous flow, it is known that solutions involve 
non-linear partial differential equations. However, the only 
breakthroughs in determining the particular mathematical

58 TOCA. p. 33.
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solutions have come through insight gained by experimentation.
Von Neumann believed that computer modelling could replace this 

59experimentation:
I wanted to point out that there are large areas in pure 
mathematics |what we today call "applied mathematics"| 
where we are blocked by a peculiar inter-relation of 
rigor and intuitive insight, each of which is needed 
for the other, and where the unmathematical process of 
experimentation with physical problems has produced 
almost the only progress which has been made. Computing, 
which is not too mathematical either in the traditional 
sense but is still closer to the central area of mathe
matics than this sort of experimentation is, might be a 
more flexible and more adequate tool in these areas 
than experimentation.

In fact, von Neumann put the computer to work in the way his 
theoretical work suggested that he employ it. He used the 

Institute for Advanced Study computer for mathematically modelling 
of three-dimensional weather flows in an attempt to improve 
weather forecasting. He used ENIAC to model a two-dimensional 
hydrodynamical p r o b l e m . H e  also investigated the use of the 
computer for solving other flow problems involving hyperbolic and

59 TOCA, p. 35.

^  See his "A Study of a Numerical Solution to•a Two- 
Dimensional Hydrodynamic Problem" (1959), reprinted in Collected 
Works. V, 611-52.
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parabolic partial differential equations for both industry and 
the army.^

Thus, von Neumann's theoretical observations about the brain 
and the computer bore practical advantage in the design and use of 
the computer for scientific research. His hope was that this 
theoretical work would become ever more important in the 
practical design of computers.

^  See the first and second reports "On the Numerical Cal
culation of Flow Problems" which were presented in 1948 and are 
reprinted in Collected Works, V, 664-750. For further references, 
see the editor's note, Ibid., p. 664.
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